Alessio Cocchieri


2025

pdf bib
OpenBioNER: Lightweight Open-Domain Biomedical Named Entity Recognition Through Entity Type Description
Alessio Cocchieri | Giacomo Frisoni | Marcos Martínez Galindo | Gianluca Moro | Giuseppe Tagliavini | Francesco Candoli
Findings of the Association for Computational Linguistics: NAACL 2025

Biomedical Named Entity Recognition (BioNER) faces significant challenges in real-world applications due to limited annotated data and the constant emergence of new entity types, making zero-shot learning capabilities crucial. While Large Language Models (LLMs) possess extensive domain knowledge necessary for specialized fields like biomedicine, their computational costs often make them impractical. To address these challenges, we introduce OpenBioNER, a lightweight BERT-based cross-encoder architecture that can identify any biomedical entity using only its description, eliminating the need for retraining on new, unseen entity types. Through comprehensive evaluation on established biomedical benchmarks, we demonstrate that OpenBioNER surpasses state-of-the-art baselines, including specialized 7B NER LLMs and GPT-4o, achieving up to 10% higher F1 scores while using 110M parameters only. Moreover, OpenBioNER outperforms existing small-scale models that match textual spans with entity types rather than descriptions, both in terms of accuracy and computational efficiency.

2024

pdf bib
To Generate or to Retrieve? On the Effectiveness of Artificial Contexts for Medical Open-Domain Question Answering
Giacomo Frisoni | Alessio Cocchieri | Alex Presepi | Gianluca Moro | Zaiqiao Meng
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Medical open-domain question answering demands substantial access to specialized knowledge. Recent efforts have sought to decouple knowledge from model parameters, counteracting architectural scaling and allowing for training on common low-resource hardware. The retrieve-then-read paradigm has become ubiquitous, with model predictions grounded on relevant knowledge pieces from external repositories such as PubMed, textbooks, and UMLS. An alternative path, still under-explored but made possible by the advent of domain-specific large language models, entails constructing artificial contexts through prompting. As a result, “to generate or to retrieve” is the modern equivalent of Hamlet’s dilemma. This paper presents MedGENIE, the first generate-then-read framework for multiple-choice question answering in medicine. We conduct extensive experiments on MedQA-USMLE, MedMCQA, and MMLU, incorporating a practical perspective by assuming a maximum of 24GB VRAM. MedGENIE sets a new state-of-the-art in the open-book setting of each testbed, allowing a small-scale reader to outcompete zero-shot closed-book 175B baselines while using up to 706x fewer parameters. Our findings reveal that generated passages are more effective than retrieved ones in attaining higher accuracy.