Akshay Raghavan


2025

pdf bib
Linking Language-based Distortion Detection to Mental Health Outcomes
Vasudha Varadarajan | Allison Lahnala | Sujeeth Vankudari | Akshay Raghavan | Scott Feltman | Syeda Mahwish | Camilo Ruggero | Roman Kotov | H. Andrew Schwartz
Proceedings of the 10th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2025)

Recent work has suggested detection of cognitive distortions as an impactful task for NLP in the clinical space, but the connection between language-detected distortions and validated mental health outcomes has been elusive. In this work, we evaluate the co-occurrence of (a) 10 distortions derived from language-based detectors trained over two common distortion datasets with (b) 12 mental health outcomes contained within two new language-to-mental-health datasets: DS4UD and iHiTOP. We find higher rates of distortions for those with greater mental health condition severity (ranging from r = 0.16 for thought disorders to r = 0.46 for depressed mood), and that the specific distortions of should statements and fortune telling were associated with a depressed mood and being emotionally drained, respectively. This suggested that language-based assessments of cognitive distortion could play a significant role in detection and monitoring of mental health conditions.