Akshay Jagatap
2025
RxLens: Multi-Agent LLM-powered Scan and Order for Pharmacy
Akshay Jagatap
|
Srujana Merugu
|
Prakash Mandayam Comar
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)
Automated construction of shopping cart frommedical prescriptions is a vital prerequisite forscaling up online pharmaceutical servicesin emerging markets due to the high prevalence of paper prescriptionsthat are challenging for customers to interpret.We present RxLens, a multi-step end-end Large Language Model (LLM)-based deployed solutionfor automated pharmacy cart construction comprisingmultiple steps: redaction of Personal Identifiable Information (PII),Optical Character Recognition (OCR), medication extraction, matching against the catalog, and bounding box detection for lineage. Our multi-step design leverages the synergy between retrieval and LLM-based generationto mitigate the vocabulary gaps in LLMs and fuzzy matching errors during retrieval.Empirical evaluation demonstrates that RxLens can yield up to 19% - 40% and 11% - 26% increase in Recall@3 relative to SOTA methods such as Medical Comprehend and vanilla retrieval augmentation of LLMs on handwritten and printed prescriptions respectively.We also explore LLM-based auto-evaluation as an alternative to costly manual annotations and observe a 76% - 100% match relative to human judgements on various tasks.
2024
PEARL: Preference Extraction with Exemplar Augmentation and Retrieval with LLM Agents
Vijit Malik
|
Akshay Jagatap
|
Vinayak S Puranik
|
Anirban Majumder
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track
Identifying preferences of customers in their shopping journey is a pivotal aspect in providing product recommendations. The task becomes increasingly challenging when there is a multi-turn conversation between the user and a shopping assistant chatbot. In this paper, we tackle a novel and complex problem of identifying customer preferences in the form of key-value filters on an e-commerce website in a multi-turn conversational setting. Existing systems specialize in extracting customer preferences from standalone customer queries which makes them unsuitable to multi-turn setup. We propose PEARL (Preference Extraction with ICL Augmentation and Retrieval with LLM Agents) that leverages collaborative LLM agents, generates in-context learning exemplars and dynamically retrieves relevant exemplars during inference time to extract customer preferences as a combination of key-value filters. Our experiments on proprietary and public datasets show that PEARL not only improves performance on exact match by ~10% compared to competitive LLM-based baselines but additionally improves inference latency by ~110%.