This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
While recent zero-shot multi-speaker text-to-speech (TTS) models achieve impressive results, they typically rely on extensive transcribed speech datasets from numerous speakers and intricate training pipelines. Meanwhile, self-supervised learning (SSL) speech features have emerged as effective intermediate representations for TTS. Further, SSL features from different speakers that are linearly close share phonetic information while maintaining individual speaker identity. In this study, we introduce kNN-TTS, a simple and effective framework for zero-shot multi-speaker TTS using retrieval methods which leverage the linear relationships between SSL features. Objective and subjective evaluations show that our models, trained on transcribed speech from a single speaker only, achieve performance comparable to state-of-the-art models that are trained on significantly larger training datasets. The low training data requirements mean that kNN-TTS is well suited for the development of multi-speaker TTS systems for low-resource domains and languages. We also introduce an interpolation parameter which enables fine-grained voice morphing. Demo samples are available at https://idiap.github.io/knn-tts .
In the field of spoken language understanding, systems like Whisper and Multilingual Massive Speech (MMS) have shown state-of-the-art performances. This study is dedicated to a comprehensive exploration of the Whisper and MMS systems, with a focus on assessing biases in automatic speech recognition (ASR) inherent to casual conversation speech specific to the Portuguese language. Our investigation encompasses various categories, including gender, age, skin tone color, and geo-location. Alongside traditional ASR evaluation metrics such as Word Error Rate (WER), we have incorporated p-value statistical significance for gender bias analysis. Furthermore, we extensively examine the impact of data distribution and empirically show that oversampling techniques alleviate such stereotypical biases. This research represents a pioneering effort in quantifying biases in the Portuguese language context through the application of MMS and Whisper, contributing to a better understanding of ASR systems’ performance in multilingual settings.
We present ArTST, a pre-trained Arabic text and speech transformer for supporting open-source speech technologies for the Arabic language. The model architecture follows the unified-modal framework, SpeechT5, that was recently released for English, and is focused on Modern Standard Arabic (MSA), with plans to extend the model for dialectal and code-switched Arabic in future editions. We pre-trained the model from scratch on MSA speech and text data, and fine-tuned it for the following tasks: Automatic Speech Recognition (ASR), Text-To-Speech synthesis (TTS), and spoken dialect identification. In our experiments comparing ArTST with SpeechT5, as well as with previously reported results in these tasks, ArTST performs on a par with or exceeding the current state-of-the-art in all three tasks. Moreover, we find that our pre-training is conducive for generalization, which is particularly evident in the low-resource TTS task. The pre-trained model as well as the fine-tuned ASR and TTS models are released for research use.
In this paper, we describe a spoken Arabic dialect identification (ADI) model for Arabic that consistently outperforms previously published results on two benchmark datasets: ADI-5 and ADI-17. We explore two architectural variations: ResNet and ECAPA-TDNN, coupled with two types of acoustic features: MFCCs and features exratected from the pre-trained self-supervised model UniSpeech-SAT Large, as well as a fusion of all four variants. We find that individually, ECAPA-TDNN network outperforms ResNet, and models with UniSpeech-SAT features outperform models with MFCCs by a large margin. Furthermore, a fusion of all four variants consistently outperforms individual models. Our best models outperform previously reported results on both datasets, with accuracies of 84.7% and 96.9% on ADI-5 and ADI-17, respectively.
GECko+ : a Grammatical and Discourse Error Correction Tool We introduce GECko+, a web-based writing assistance tool for English that corrects errors both at the sentence and at the discourse level. It is based on two state-of-the-art models for grammar error correction and sentence ordering. GECko+ is available online as a web application that implements a pipeline combining the two models.