2025
pdf
bib
abs
SLM-Mod: Small Language Models Surpass LLMs at Content Moderation
Xianyang Zhan
|
Agam Goyal
|
Yilun Chen
|
Eshwar Chandrasekharan
|
Koustuv Saha
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large language models (LLMs) have shown promise in many natural language understanding tasks, including content moderation. However, these models can be expensive to query in real-time and do not allow for a community-specific approach to content moderation. To address these challenges, we explore the use of open-source small language models (SLMs) for community-specific content moderation tasks. We fine-tune and evaluate SLMs (less than 15B parameters) by comparing their performance against much larger open- and closed-sourced models in both a zero-shot and few-shot setting. Using 150K comments from 15 popular Reddit communities, we find that SLMs outperform zero-shot LLMs at content moderation-11.5% higher accuracy and 25.7% higher recall on average across all communities. Moreover, few-shot in-context learning leads to only a marginal increase in the performance of LLMs, still lacking compared to SLMs. We further show the promise of cross-community content moderation, which has implications for new communities and the development of cross-platform moderation techniques. Finally, we outline directions for future work on language model based content moderation.
2024
pdf
bib
abs
Simulating Opinion Dynamics with Networks of LLM-based Agents
Yun-Shiuan Chuang
|
Agam Goyal
|
Nikunj Harlalka
|
Siddharth Suresh
|
Robert Hawkins
|
Sijia Yang
|
Dhavan Shah
|
Junjie Hu
|
Timothy Rogers
Findings of the Association for Computational Linguistics: NAACL 2024
Accurately simulating human opinion dynamics is crucial for understanding a variety of societal phenomena, including polarization and the spread of misinformation. However, the agent-based models (ABMs) commonly used for such simulations often over-simplify human behavior. We propose a new approach to simulating opinion dynamics based on populations of Large Language Models (LLMs). Our findings reveal a strong inherent bias in LLM agents towards producing accurate information, leading simulated agents to consensus in line with scientific reality. This bias limits their utility for understanding resistance to consensus views on issues like climate change. After inducing confirmation bias through prompt engineering, however, we observed opinion fragmentation in line with existing agent-based modeling and opinion dynamics research. These insights highlight the promise and limitations of LLM agents in this domain and suggest a path forward: refining LLMs with real-world discourse to better simulate the evolution of human beliefs.
pdf
bib
abs
Beyond Demographics: Aligning Role-playing LLM-based Agents Using Human Belief Networks
Yun-Shiuan Chuang
|
Krirk Nirunwiroj
|
Zach Studdiford
|
Agam Goyal
|
Vincent V. Frigo
|
Sijia Yang
|
Dhavan V. Shah
|
Junjie Hu
|
Timothy T. Rogers
Findings of the Association for Computational Linguistics: EMNLP 2024
Creating human-like large language model (LLM) agents is crucial for faithful social simulation. Having LLMs role-play based on demographic information sometimes improves human likeness but often does not. This study assessed whether LLM alignment with human behavior can be improved by integrating information from empirically-derived human belief networks. Using data from a human survey, we estimated a belief network encompassing 64 topics loading on nine non-overlapping latent factors. We then seeded LLM-based agents with an opinion on one topic, and assessed the alignment of its expressed opinions on remaining test topics with corresponding human data. Role-playing based on demographic information alone did not align LLM and human opinions, but seeding the agent with a single belief greatly improved alignment for topics related in the belief network, and not for topics outside the network. These results suggest a novel path for human-LLM belief alignment in work seeking to simulate and understand patterns of belief distributions in society.