Abhinav Java


2025

pdf bib
Towards Operationalizing Right to Data Protection
Abhinav Java | Simra Shahid | Chirag Agarwal
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The widespread practice of indiscriminate data scraping to fine-tune language models (LMs) raises significant legal and ethical concerns, particularly regarding compliance with data protection laws such as the General Data Protection Regulation (GDPR). This practice often results in the unauthorized use of personal information, prompting growing debate within the academic and regulatory communities. Recent works have introduced the concept of generating unlearnable datasets (by adding imperceptible noise to the clean data), such that the underlying model achieves lower loss during training but fails to generalize to the unseen test setting. Though somewhat effective, these approaches are predominantly designed for images and are limited by several practical constraints like requiring knowledge of the target model. To this end, we introduce **RegText**, a framework that injects imperceptible spurious correlations into natural language datasets, effectively rendering them unlearnable without affecting semantic content. We demonstrate RegText’s utility through rigorous empirical analysis of small and large LMs. Notably, RegText can restrict newer models like GPT-4o and Llama from learning on our generated data, resulting in a drop in their test accuracy compared to their zero-shot performance and paving the way for generating unlearnable text to protect public data.

2024

pdf bib
“Thinking” Fair and Slow: On the Efficacy of Structured Prompts for Debiasing Language Models
Shaz Furniturewala | Surgan Jandial | Abhinav Java | Pragyan Banerjee | Simra Shahid | Sumit Bhatia | Kokil Jaidka
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Existing debiasing techniques are typically training-based or require access to the model’s internals and output distributions, so they are inaccessible to end-users looking to adapt LLM outputs for their particular needs. In this study, we examine whether structured prompting techniques can offer opportunities for fair text generation. We evaluate a comprehensive end-user-focused iterative framework of debiasing that applies System 2 thinking processes for prompts to induce logical, reflective, and critical text generation, with single, multi-step, instruction, and role-based variants. By systematically evaluating many LLMs across many datasets and different prompting strategies, we show that the more complex System 2-based Implicative Prompts significantly improve over other techniques demonstrating lower mean bias in the outputs with competitive performance on the downstream tasks. Our work offers research directions for the design and the potential of end-user-focused evaluative frameworks for LLM use.