
A Model Details
Generative language model We use a simple
forward recurrent neural model with cross-entropy
loss in all model variations:

P(wt+1|w0:t ,c) = ŷt+1 = F (w0:t ,c;q) (2)

loss(k1:t ,q) =�
T

Â
t=0

log(�kt
· ŷt) (3)

where F represents the neural network function
with parameters q , inputs w0:t the sequence of
words with w0 the sentence marker ‘hsi’, and c to
represent the image or with additional top-down
knowledge. ŷt+1 2 [0,1]|V | is a categorical distri-
bution over the choices in vocabulary V for the
conditional probability of the next word. The loss
is calculated for each sample of word sequence
[vk0 ,vk1 , ...,vkT

], which kt 2 {1, ...|V |} refers to the
word index in the vocabulary, and dkt

is its one-hot
encoding.

Simple encoder-decoder An encoder-decoder
architecture without spatial attention, similar to
(Vinyals et al., 2015), is the most simple baseline
for setting up the experiments and designing the
foundation for fusing vision and language. The in-
put to the model is an image and the start symbol
< s > for the language model decoder. The word
embeddings et are concatenated with the scene vi-
sual features (v̄). The embeddings are randomly
initialised and learned as a parameter set for the
model. The visual vectors are produced by a pre-
trained ResNet50 (He et al., 2016). Then, v̄ is
made by a dense layer translating the visual vector
to a unified tensor size for computational conve-
nience. This layers also helps fine-tuning the vi-
sual features.

Fv(x) = ReLU(Wv ·x+bv)

v̄ =
Âk

i=1 Fv(v0i)

k

where Fv the function in Figure 2, v0
i
2 R2048 with

ResNet50 dimensions, Wv 2 R100⇥2048 and bv 2
R100 are parameters to be learned as fine-tuning.
The resulting vector is concatenated to a word em-
bedding and fed to the Long-Short Term Mem-
ory (LSTM) network (Hochreiter and Schmidhu-
ber, 1997) and its output to a multi-layer percep-
tron (MLP) with a softmax layer which predicts
the next word, as it was described earlier in Equa-
tion 2. This function would be:

ŷt+1 = softmax(MLP(LSTM([et ; v̄],ht�1))) (4)

where et and ht respectively represent the word
embedding and the hidden unit in recurrent cell at
time t of the word sequence (Figure 3a). Ideally,
the spatial features must be learned bottom-up in
v̄ as other visual features in the deep layers of con-
volutions in ResNet.

Adaptive attention The simple encoder-
decoder architecture relies on bottom-up learning
of visual features and geometric arrangement of
objects. However, it has been shown in recent
image captioning models that a spatial attention
mechanism to localise each word improves the
language generation (Xu et al., 2015). Moreover,
the attentions can be learned as an adaptation of
modalities. Based on this assumption we will use
the adaptive attention similar to (Lu et al., 2017).
In generalisation of adaptive attention, the feature
vectors including visual features from different
locations as well as the contextual language
features and other modalities f̂ = [ f1, f2, ..., fn]
are fused with weighted sum according to their
attention weight ↵̂.

ĉt =
n

Â
i=1

↵i fi (5)

where ĉt represents the fused vector after apply-
ing adaptive attention on n feature vectors. Know-
ing which features in what degree contribute to
prediction of the next word is decided in a multi-
layer perceptron (MLPa) with softmax as ↵̂ in Fig-
ure 12. This module is formalised in a sequential
process as follows:

zt =W 2
a

tanh(W 1
a
· f̂t)

↵̂t = softmax(zt).

where ↵̂t = [↵t,1,↵t,2, ...,↵t,n] is the output of the
module in time t, and W 1

a
,W 2

a
are the parameters

of the module which will be trained in the model.

Attention

Figure 12: The generalised adaptive attention module.



Bottom-up localisation With visual feature rep-
resenting each region of the image as in Figure 2,
attention mechanism is going to work as localisa-
tion model. We designed the interaction between
the attention mechanism and the language model
more similar to (Anderson et al., 2018): two lay-
ers of stacked LSTM, the first stack (LSTMa) to
produce features for attention model, then the sec-
ond stack (LSTMl) to produce contextualised lin-
guistic features to be fused with attended visual
features (Figure 3b). This design makes it easier
to be extended with top-down visual vectors.

ĉt =
49

Â
i=1

↵t,ivi +↵t,50h
l

t
(6)

where each vi is a visual feature referring to one
of the 49 locations in Figure 2, and hl

t
is the con-

textualised language feature from LSTMl .

Top-down localisation Unlike the bottom-up
localisation, the top-down method has a list of re-
gions of interest pre-processed from other proce-
dures. The process of region proposals can be
part of a bottom-up process as in Anderson et al.
(2018) or Johnson et al. (2016) which instead of
the grids of regions in ConvNets in Figure 2 a
Faster R-CNN (Ren et al., 2015) is used to ex-
tract all possible regions of interest. In this paper,
we use the bounding box annotations on images as
the top-down localisation knowledge, then we use
ResNet50 to extract visual features from these re-
gions Figure 4. At this stage the top-down visual
representation only proposes visual vectors of two
objects in random order without their spatial role
in intended descriptions shown in Figure 3d.

ĉt =↵t,1vob j1 +↵t,2vob j2 +↵t,3h
l

t
(7)

where each vob j1 and vob j2 are the visual features
referring to two regions in Figure 4, and hl

t
is the

contextualised language feature from LSTMl .

Top-down target-landmark assignment An-
other top-down information is the assignment of
one region as the target and another region as the
landmark. This top-down knowledge is encoded
as the order in the list of two object, first object is
the target and the second object is the landmark in
Equation 7.

ĉt =↵t,1vTARGET +↵t,2vLANDMARK +↵t,3h
l

t
(8)

where each vTARGET and vLANDMARK are the visual
features referring to two regions in Figure 4 and
their semantic role is defined top-down.

Top-down geometric features With top-down
localisation we may lose the relative location of
two objects since they are processed separately in
two disconnected convolutional neural networks.
Therefore, the top-down geometric features are
required for grounding of denotation of the lo-
cational words. Additionally, representing geo-
metric knowledge can encode the frame of ref-
erence. For example, a simple geometric rela-
tion between two bounding boxes can be an ar-
row from the centre of one bounding box to the
centre of the other, however the choice between
the order of objects depends on the frame of
reference (i.e. ob j1 ! ob j2 or ob j1  ob j2).
We represent the geometric features by consider-
ing the top-down target-landmark assignment (i.e.
TARGET ! LANDMARK). Therefore with these
feature vectors we encode the top-down frame of
reference as well. This creates different variations
of feature fusions (Table 2).

In order to find the best encoding of top-down
geometric features, we considered two different
vectorisation strategies to represent relation be-
tween two bounding boxes Figure 5.

• (mask) a concatenation of two mask vectors
in 49 locations (Figure 5a).

• (VisKE) a dense representation with 11 geo-
metric features according to (Sadeghi et al.,
2015) (Figure 5b): where dx,dy are changes
in coordinates of the centres, ov,ov1,ov2 the
overlapping areas (total, relative to the first,
and the second bounding box), h1,h2 heights,
w1,w2 widths and a1,a2 areas.

Then, a feed-forward network with two layers
(Fs) is used to project geometric features into a
100-dimension vector to become comparable with
other modalities.

Fs(x) =W 2
s

tanh(W 1
s
·x+b1

s
)

s= Fs(s
0)

where s represents the transformed geomet-
ric spatial features, and W 2

s
2 R100⇥100,W 1

s
2

R100⇥11(or R100⇥98) are the set parameters regard-
ing this module to be learned in the model.

B Examples of generated descriptions

More examples of generated descriptions with
beam search of depth 5 are shown in Figure 13.



Model name Visual features Attention
bu49 [v1, ...,v49] ĉt = Â49

i=1↵t,ivi +↵t,50h
l
t

bu49+mask [v1, ...,v49] ĉt = Â49
i=1↵t,ivi +↵t,50h

l
t +↵t,51s

bu49+VisKE [v1, ...,v49] ĉt = Â49
i=1↵t,ivi +↵t,50h

l
t +↵t,51s

td [vob j1 ,vob j2 ] ĉt =↵t,1vTARGET +↵t,2vLANDMARK +↵t,3h
l
t

td +mask [vob j1 ,vob j2 ] ĉt =↵t,1vob j1 +↵t,2vob j2 +↵t,3h
l
t +↵t,4s

td +VisKE [vob j1 ,vob j2 ] ĉt =↵t,1vob j1 +↵t,2vob j2 +↵t,3h
l
t +↵t,4s

td (order) [vTARGET,vLANDMARK] ĉt =↵t,1vTARGET +↵t,2vLANDMARK +↵t,3h
l
t

td +mask (order) [vTARGET,vLANDMARK] ĉt =↵t,1vTARGET +↵t,2vLANDMARK +↵t,3h
l
t +↵t,4s

td +VisKE (order) [vTARGET,vLANDMARK] ĉt =↵t,1vTARGET +↵t,2vLANDMARK +↵t,3h
l
t +↵t,4s

Table 2: The visual features and their attention

h “keyboard”, “in front of”, “computer”i
simple computer
bu49 keyboard on desk
td computer on top of desk
td order keyboard on computer
td order+VisKE keyboard on computer
h “mirror”, “in side of”, “semi”i
simple truck
bu49 truck has door
td door on truck
td order light on road
td order+VisKE mirror on truck
h “lanyard”, “around”, “neck”i
simple tie
bu49 man has hair
td tie around neck
td order tie around neck
td order+VisKE tie around neck

Figure 13: From VisualGenome: 2413204a 2417890b 2413371c

aSchmidt (2010): CC BY-NC-SA 2.0.
bYap (2008): CC BY-NC 2.0.
cCoghlan (2011): CC BY-SA 2.0.


