
A Survey of Recent Advances in
Efficient Parsing for Graph Grammars

FSMNLP 2019

F. Drewes

Overview

0 Introduction

1 Context-Free Graph Grammars

2 General Approaches to HRG Parsing

3 LL- and LR-like Restrictions to Avoid Backtracking

4 Unique Decomposability

5 Systems and Tools

6 Future Work?

Introduction

Context-Free Graph Grammars and Parsing

Brief facts about context-free graph grammars:

1 emerged in the 1980s

2 generalization of context-free string grammars to graphs

3 can easily generate NP-complete graph languages
⇒ even non-uniform parsing is impractical

4 early polynomial solutions were merely of theoretical interest:

• strong restrictions
• restrictions difficult to check
• degree of polynomial usually depends on grammar

5 renewed interest nowadays due to Abstract Meaning Representation
and similar notions of semantic graphs in computational linguistics.

Different Strategies

Recent attempts use different strategies to deal with NP-completeness:

1 Do your best, but be prepared to pay the price in the worst case.

2 Generate deterministic parsers based on LL- or LR-like restrictions.

3 Make sure that the generated graphs have a unique decomposition
which determine the structure of derivation trees.

exponential
↓

polynomial
↓

uniformly polynomial

This talk will summarize those approaches.

Context-Free Graph Grammars

Here: hyperedge-replacement grammars

Hypergraphs

Graphs contain labelled hyperedges instead of edges:

The number k is the rank of A and of the hyperedge.

Rank 2 yields an ordinary edge: is
.

Some nodes may be marked 1, 2, . . . , p and are called ports.
The number p is the rank of the hypergraph.

From now on: “edge” means “hyperedge”

“graph” means “hypergraph”

Hyperedge Replacement (HR)

Hyperedge replacement:

• A rule A→ H consists of a label A and a graph H of equal rank.

• Rule application:

1 remove a hyperedge e with label A,
2 insert H by fusing its ports with the incident nodes of e.

Example

Rules:

Derivation:

Why is Parsing Difficult?

Cocke-Kasami-Younger for HR works, but is inefficient because
a graph has exponentially many subgraphs.

Even when this is not the problem, we still have
too many ways to order the attached nodes of nonterminal hyperedges. . .

Reducing SAT2

Consider a propositional formula K1 ∧ · · · ∧Km over x1, . . . , xn in CNF.10 H. Björklund, F. Drewes, and P. Ericson

S !
K

. . .
| {z }

2n

K ! K K

. . .

K !
i

Ki

. . .

(1 i m)

Ki ! Kij

. . .

if xj 2 Ki Ki ! Kij

. . .
2j�1 2j

. . .

if ¬xj 2 Ki

Kij ! Kij

. . .

Kij

. . .
2`�1 2`

. . .

for ` 2 [n] \ {j} c

. . .

Fig. 3. Reduction of SAT to the uniform membership problem

We first give a construction that violates conditions 4 and 5. It uses nonter-
minals S, K, Ki, Kij with i 2 [m], j 2 [n]. The terminal labels are c, all j 2 [m],
and an “invisible” label. The labels K, Ki, Kij , c are of rank 2n, S is of rank 0
and the remaining ones are of rank 1. Figure 3 depicts the rules of the grammar.
Note that the rules are on normal form.

The first row of rules generates 2n leaves which, intuitively, represent x1, ¬x1,
. . . , xn, ¬xn and are targets of a K-labeled nonterminal. The nonterminal is
cloned any number of times (with the intention to clone it m times, once for
each clause). Afterwards it “guesses” which clause Ci (i 2 N) it should check.
The second row of rules lets every Ki “guess” which literal makes Ci true. If the
literal is negative, it interchanges the corresponding targets, otherwise it keeps
their order. The third row of rules, for all pairs (x`, ¬x`) that are not used to
satisfy Ci, interchanges the corresponding targets or keeps their order. Finally, it
replaces the nonterminal edge by a terminal one.

Now, consider the input DAG G in Figure 4 (left). Suppose that G is indeed
generated by H. Since the jth outgoing tentacles of all c-labeled edges point
to the same node (representing either xj or ¬xj), a consistent assignment is
obtained that satisfies '. Conversely, a consistent assignment obviously gives rise
to a corresponding derivation of G, thus showing that the reduction is correct.

Finally, let us note that changing the initial rule to the one shown in the left
part of Figure 4 (using a new terminal ⇧ of rank 2) makes H satisfy condition 4
as well. This change being made, the input graph is changed by including two

Polynomial Uniform Parsing of DAG-Generating HRGs 11

. . .

1 m

...
...

9
>>>>>>=
>>>>>>;

n times

c c

. . .

. . .

. . .

. . .

S !

⇧

K K

. . .

Fig. 4. Input graph in the proof of Theorem 8 (left) and modified starting rule (right)

copies of the original input, both sharing their leaves, and adding a new root
with an outgoing ⇧-hyperedge targeting the roots of the two copies. ut

If we also disregard restriction 2, the non-uniform membership problem also
becomes NP-complete, even if we only consider graphs of height 1.

Theorem 9. There is a DAG grammar H that conforms to restrictions 1, 3,
and 4, such that all graphs in L(H) have height 1 and L(H) is NP-complete.

The proof is by reduction from the membership problem for context-free grammars
with disconnecting (CFGDs), using a result from [8]. A CFGD is an ordinary
context-free grammar in Chomsky normal form, with additional rules A ! ⇧,
where ⇧ is a special symbol that cuts the string into two. Thus, an element in
the generated language is a finite multiset of strings rather than a single string.
As shown in [8], CFGDs can generate NP-complete languages. We represent a
multiset {s1, . . . , sk} of strings si as a graph consisting of k DAGs of height 1
sharing their roots. If si = a1 · · · am then the DAG representing it consists
of the root v, leaves u0, . . . , um, and ai-hyperedges ei with src(ei) = r and
tar(ei) = ui�1ui. Moreover, there are two “unlabeled” terminal edges from v
to u0 and un, resp. Now, every CFGD can be turned into an equivalent DAG
grammar using the schemata in Figure 5. ut

S ! S0 A! B C A! a A!

Fig. 5. Rules of a DAG grammar equivalent to a CFGD with initial nonterminal S0,
from left to right: initial rule, A! BC, A! a, A! ⇧.

1H. Björklund et al., LNCS 9618, 2016

Early Approaches to HR Grammar Parsing

• Cocke-Kasami-Younger style:

• Conditions for polynomial running time3

• DiaGen4

• Cubic parsing of languages of strongly connected graphs5 6

• After that, the area fell more or less silent for almost 2 decades.

Then came Abstract Meaning Representation7,
and with it a renewed interest in the question.

3Lautemann, Acta Inf. 27, 1990
4Minas, Proc. IEEE Symposium on Visual Languages 1997
5W. Vogler, LNCS 532, 1990
6D., Theoretical Computer Science 109, 1993
7Banarescu et al., Proc. 7th Linguistic Annotation Workshop, ACL 2013

Recent General Approaches

to HRG Parsing

Choosing Generality over (Guaranteed) Efficiency

Approaches that avoid restrictions (exponential worst-case behaviour):

• Lautemann’s algorithm refined by efficient matching8, implemented
in Bolinas

• S-graph grammar parsing9, using interpreted regular tree grammars
as implemented in Alto

• Generalized predictive shift-reduce parsing10, implemented in Grappa

8Chiang et al., ACL 2013
9Groschwitz et al., ACL 2015

10Hoffmann & Minas, LNCS 11417, 2019

The Approach by Chiang et al.

• Use dynamic programming to determine, for “every” subgraph G′ of
the input G, the set of nonterminals A that can derive G′.

• “Every”: Consider G′ that can be cut out along rank(A) nodes.

• For efficient matching of rules, use tree decompositions of
right-hand sides.

The algorithm runs in time O((3dn)k+1) where

• d is the node degree of G,

• n is the number of nodes, and

• k is the width of tree decompositions of right-hand
sides.

Important: G is assumed to be connected!

The S-Graph Grammar Approach

• Instead of HR, use the more primitive graph construction operations
by Engelfriet and Courcelle with interpreted regular tree grammars11.

• Strategy (parsing by intersection):

• Compute regular tree language LG of all trees denoting G.
• Intersect with the language of the grammar’s derivation trees.
• Trick: use a lazy approach to avoid building LG explicitly.

The algorithm runs in time O(ns3sep(s)) where

• s is the number of source names (∼ number of ports)

• sep(s) is Lautemann’s s-separability (≤ n)

Alto is reported to be 6722 times faster than Bolinas on a
set of AMRs from the “Little Prince” AMR-bank.

11Koller & Kuhlmann, Proc. Intl. Conf. on Parsing Technologies 2011

Generalized Predictive Shift-Reduce Parsing

• A compiler generator approach.

• Use LR parsing from compiler construction, but allow conflicts.

• Parser uses characteristic finite automaton to select actions.

• In case of conflicts, use breadth-first search implemented with graph
structured stack.

• In addition, use memoization.

Grappa measurements for a
grammar generating Sierpin-
ski graphs (by M. Minas):

LL- and LR-like Restrictions to

Avoid Backtracking

Predictive Parsing

Two versions of predictive parsing:

• deterministic recursive descent, generalizing SLL string parsing
→ predictive top-down12

• deterministic bottom-up, generalizing SLR string parsing
→ predictive shift-reduce13

Common modus operandi:

• View right-hand side as a list of edges to be matched step by step.

• Terminal edges are “consumed” from the input graph.

• Nonterminal edges are handled by recursive call (top-down) or
reduction (bottom-up).

12D., Hoffmann, Minas, LNCS 10373, 2015
13D., Hoffmann, Minas, J. Logical and Alg. Methods in Prog. 104, 2019

Predictive Top-Down Parsing (PTD)

In PTD parsing, each nonterminal A becomes a parsing procedure:

• parser generator determines lookahead for every A-rule:
rest graphs (lookahead sets) for alternative A-rules must be disjoint
⇒ the current rest graph determines which rule to apply;

• in doing so, we have to distinguish between different profiles of A;

• alternative terminal edges require free edge choice.

Lookahead and free edge choice are approximated by
Parikh sets to obtain efficiently testable conditions.

Running time of generated parser is O(n2).

Predictive Shift-Reduce Parsing (PSR)

PSR parsing reduces the input graph back to the initial nonterminal:

• parser maintains a stack representing the graph to which the input
read so far has been reduced

• shift steps read the next terminal edge from the input graph (free
edge choice needed here as well)

• reduce steps replace rhs on top of stack with lhs

• parser generator determines characteristic finite automaton (CFA)
that guides the choice of shift and reduce steps

• CFA must be conflict free

• string parsing only faces shift-reduce and reduce-reduce conflicts;
now there may also be shift-shift conflicts.

Running time of generated parser is O(n).

Unique Decomposability

Reentrancies

• PTD and PSR grammar analysis can be expensive for large
grammars.

• In NLP, grammars may be volatile and very large
⇒ uniformly polynomial parsing may be preferable.

• Restrictions take inspiration of Abstract Meaning Representation,
viewing graphs as trees with reentrancies.

• Original strong assumptions14 were later relaxed15 and extended to
weighted HR grammars16.

• This type of HR grammar can also be learned à la Angluin17.

14H. Björklund et al., LNCS 9618, 2016
15H. Björklund et al., 2018 (under review)
16H. Björklund et al., Mathematics of Language 2018
17J. Björklund et al., LNCS 10329, 2017

Reentrancies

Reentrancies in a nutshell (bullets are ports)

Reentrancies

Reentrancies in a nutshell (bullets are ports)

Reentrancies

Reentrancies in a nutshell (bullets are ports)

Reentrancies

Reentrancies in a nutshell (bullets are ports)

Reentrancies

Reentrancies in a nutshell (bullets are ports)

Reentrancies

Reentrancies in a nutshell (bullets are ports)

Requirements on right-hand sides:

1 targets of every nonterminal
hyperedge e are reentrant w.r.t. e

2 all nodes reachable from the root

Yields a unique hierarchical decomposition
revealing the structure of derivation trees.

Reentrancies

Reentrancies in a nutshell (bullets are ports)

Requirements on right-hand sides:

1 targets of every nonterminal
hyperedge e are reentrant w.r.t. e

2 all nodes reachable from the root

Yields a unique hierarchical decomposition
revealing the structure of derivation trees.

Reentrancies

Reentrancies in a nutshell (bullets are ports)

Requirements on right-hand sides:

1 targets of every nonterminal
hyperedge e are reentrant w.r.t. e

2 all nodes reachable from the root

Yields a unique hierarchical decomposition
revealing the structure of derivation trees.

However, there is one problem left. . .

Recall: Reducing SAT
10 H. Björklund, F. Drewes, and P. Ericson

S !
K

. . .
| {z }

2n

K ! K K

. . .

K !
i

Ki

. . .

(1 i m)

Ki ! Kij

. . .

if xj 2 Ki Ki ! Kij

. . .
2j�1 2j

. . .

if ¬xj 2 Ki

Kij ! Kij

. . .

Kij

. . .
2`�1 2`

. . .

for ` 2 [n] \ {j} c

. . .

Fig. 3. Reduction of SAT to the uniform membership problem

We first give a construction that violates conditions 4 and 5. It uses nonter-
minals S, K, Ki, Kij with i 2 [m], j 2 [n]. The terminal labels are c, all j 2 [m],
and an “invisible” label. The labels K, Ki, Kij , c are of rank 2n, S is of rank 0
and the remaining ones are of rank 1. Figure 3 depicts the rules of the grammar.
Note that the rules are on normal form.

The first row of rules generates 2n leaves which, intuitively, represent x1, ¬x1,
. . . , xn, ¬xn and are targets of a K-labeled nonterminal. The nonterminal is
cloned any number of times (with the intention to clone it m times, once for
each clause). Afterwards it “guesses” which clause Ci (i 2 N) it should check.
The second row of rules lets every Ki “guess” which literal makes Ci true. If the
literal is negative, it interchanges the corresponding targets, otherwise it keeps
their order. The third row of rules, for all pairs (x`, ¬x`) that are not used to
satisfy Ci, interchanges the corresponding targets or keeps their order. Finally, it
replaces the nonterminal edge by a terminal one.

Now, consider the input DAG G in Figure 4 (left). Suppose that G is indeed
generated by H. Since the jth outgoing tentacles of all c-labeled edges point
to the same node (representing either xj or ¬xj), a consistent assignment is
obtained that satisfies '. Conversely, a consistent assignment obviously gives rise
to a corresponding derivation of G, thus showing that the reduction is correct.

Finally, let us note that changing the initial rule to the one shown in the left
part of Figure 4 (using a new terminal ⇧ of rank 2) makes H satisfy condition 4
as well. This change being made, the input graph is changed by including two

Polynomial Uniform Parsing of DAG-Generating HRGs 11

. . .

1 m

...
...

9
>>>>>>=
>>>>>>;

n times

c c

. . .

. . .

. . .

. . .

S !

⇧

K K

. . .

Fig. 4. Input graph in the proof of Theorem 8 (left) and modified starting rule (right)

copies of the original input, both sharing their leaves, and adding a new root
with an outgoing ⇧-hyperedge targeting the roots of the two copies. ut

If we also disregard restriction 2, the non-uniform membership problem also
becomes NP-complete, even if we only consider graphs of height 1.

Theorem 9. There is a DAG grammar H that conforms to restrictions 1, 3,
and 4, such that all graphs in L(H) have height 1 and L(H) is NP-complete.

The proof is by reduction from the membership problem for context-free grammars
with disconnecting (CFGDs), using a result from [8]. A CFGD is an ordinary
context-free grammar in Chomsky normal form, with additional rules A ! ⇧,
where ⇧ is a special symbol that cuts the string into two. Thus, an element in
the generated language is a finite multiset of strings rather than a single string.
As shown in [8], CFGDs can generate NP-complete languages. We represent a
multiset {s1, . . . , sk} of strings si as a graph consisting of k DAGs of height 1
sharing their roots. If si = a1 · · · am then the DAG representing it consists
of the root v, leaves u0, . . . , um, and ai-hyperedges ei with src(ei) = r and
tar(ei) = ui�1ui. Moreover, there are two “unlabeled” terminal edges from v
to u0 and un, resp. Now, every CFGD can be turned into an equivalent DAG
grammar using the schemata in Figure 5. ut

S ! S0 A! B C A! a A!

Fig. 5. Rules of a DAG grammar equivalent to a CFGD with initial nonterminal S0,
from left to right: initial rule, A! BC, A! a, A! ⇧.

Order Preservation

Conclusion: we also need order preservation!

We must provide a binary relation on nodes that

1 is efficiently computable,

2 coincides with the order of targets of nonterminal
edges, and

3 is compatible with hyperedge replacement.

Theorem

For a reentrancy and order preserving HRG G and a graph
G as input, G ∈ L(G) can be decided in time

O(max(|G|, |G|)2).
This holds also for computing the weight of G if the rules
of G have weights from a commutative semiring.

Systems and Tools

Bolinas

Bolinas18 (USC/ISI, D. Bauer, K. Knight) implements the parser of
(Chiang et al., ACL 2013).

Main features:

• weighted rules

• n-best derivations

• translation via synchronous HR grammars

• EM training from corpora

18http://www.isi.edu/licensed-sw/bolinas

http://www.isi.edu/licensed-sw/bolinas

Alto

Alto19 (A. Koller) implements interpreted regular tree grammars.

One instantiation is the HR parser of (Koller & Kuhlmann, 2011).

Main features correspond to those of Bolinas:

• weighted rules

• n-best derivations

• translation via synchronous HR grammars

• EM training from corpora

19http://github.com/coli-saar/alto

http://github.com/coli-saar/alto

Grappa

Grappa20 (M. Minas) provides parser generators for HRG grammars.

Main features:

• generators for predictive top-down (PTD), predictive shift-reduce
(PSR), generalized PSR parsers

• can generate PTD and PSR parsers for contextual HR grammars21

• is constantly being improved and extended

• has a tasty logo

20http://www.unibw.de/inf2/grappa
21Drewes & Hoffmann, Acta Informatica 52 2015

http://www.unibw.de/inf2/grappa

Grappa

Grappa20 (M. Minas) provides parser generators for HRG grammars.

Main features:

• generators for predictive top-down (PTD), predictive shift-reduce
(PSR), generalized PSR parsers

• can generate PTD and PSR parsers for contextual HR grammars21

• is constantly being improved and extended

• has a tasty logo

20http://www.unibw.de/inf2/grappa
21Drewes & Hoffmann, Acta Informatica 52 2015

http://www.unibw.de/inf2/grappa

Future Work?

Some Questions for Future Work

• How to make HR grammars efficiently parsable by design?

• Can HR grammars be learned from data so that they are (1) small
and (2) efficiently parsable?

• What are useful and benign extensions that can be handled
efficiently (like contextual HR)?

• How to handle node labels in a good way (e.g., enabling relabelling)?

• Efficient transductions that turn strings/trees into graphs?

Thank you!

Questions?

