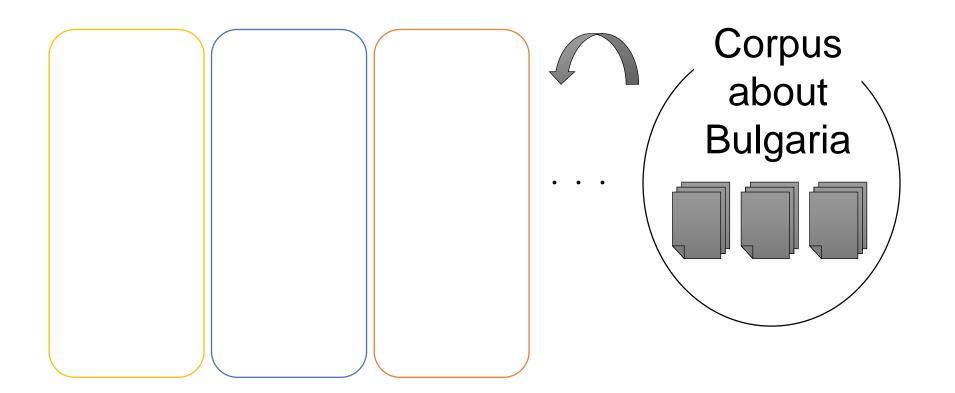
Topic Models with Logical Constraints on Words

Hayato Kobayashi, Hiromi Wakaki, Tomohiro Yamasaki, and Masaru Suzuki

Corporate Research and Development Center,

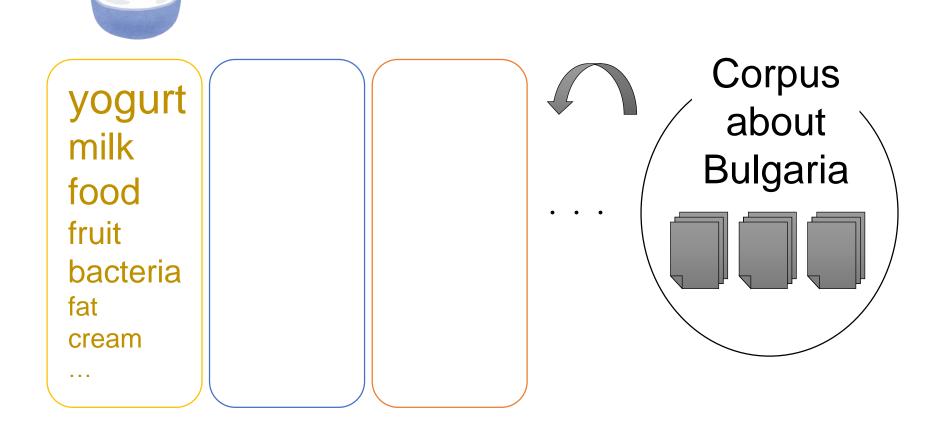
Toshiba Corporation, Japan

- Method to extract latent topics on a corpus
 - Each topic is a distribution on words



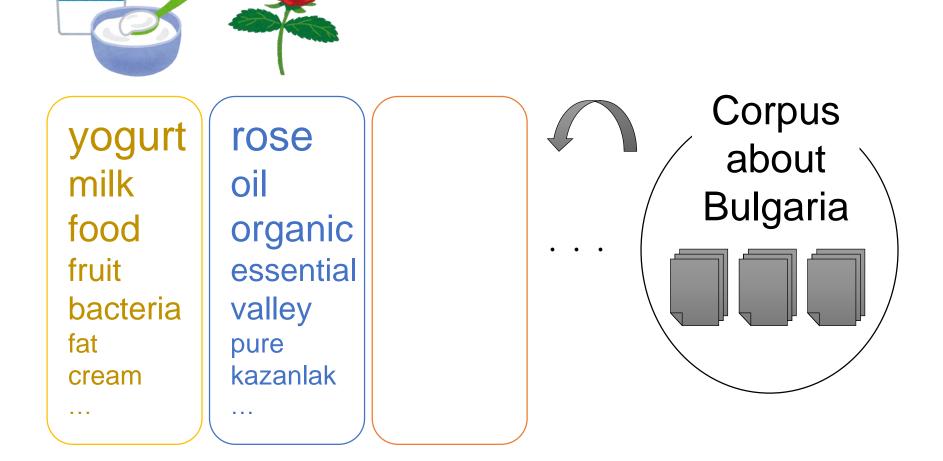
- Method to extract latent topics on a corpus
 - Each topic is a distribution on words

YOGURT

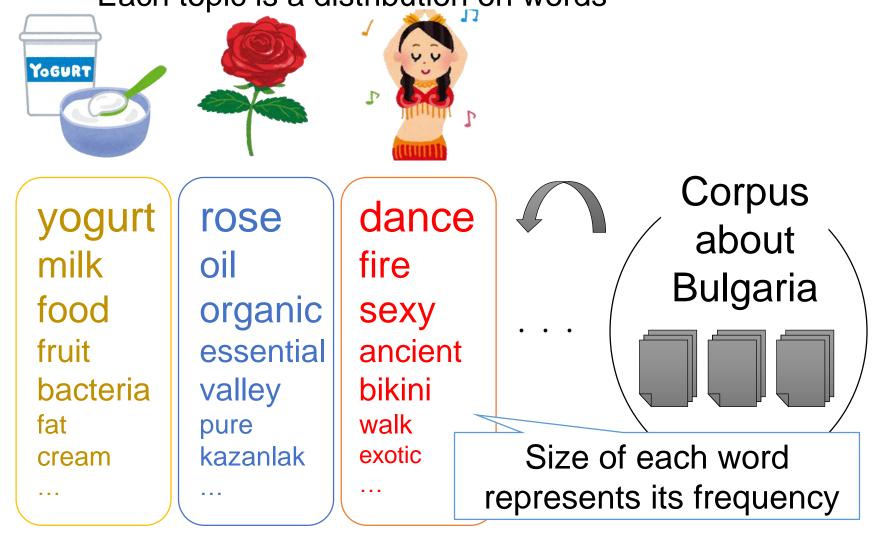


YOGURT

Method to extract latent topics on a corpus
Each topic is a distribution on words



Method to extract latent topics on a corpus
Each topic is a distribution on words



17 P P dance fire sexy ancient bikini walk exotic . . .

Existing work [Andrzejewski+ ICML2009]

- Constraints on words for topic modeling
 - Must-Link(A,B) : A and B appear in the same topic
 - Cannot-Link(A,B) : A and B don't appear in the same topic

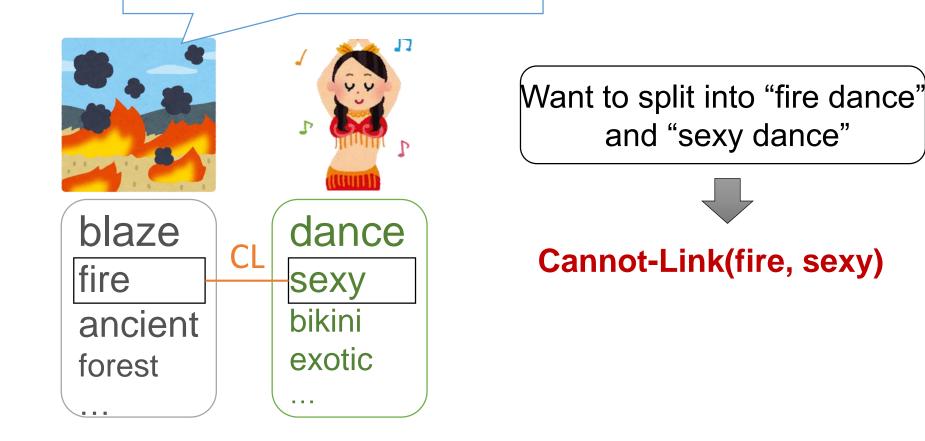
Want to split into "fire dance" and "sexy dance"

Cannot-Link(fire, sexy)

Problem of the existing work

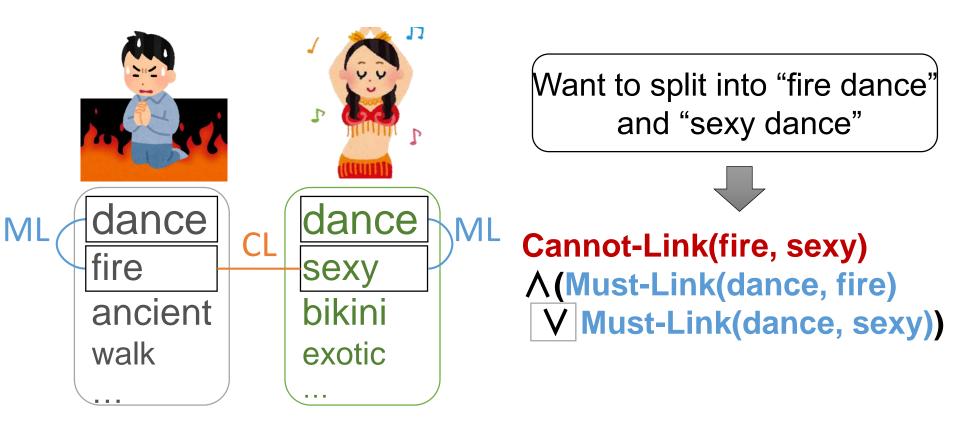
Constraints often don't align with user's intention

You might get "blaze" topic instead of "fire dance" topic



This work

Logical constraints on words for topic modeling
Conjunctions (∧), disjunctions (∨), negations (¬)



Outline of the rest of this talk

- LDA [Blei+ JMLR2003]
 - One of topic modeling method
- LDA-DF [Andrzejewski+ ICML2009]
 - Must-Link and Cannot-Link
- This work
 - Logical expressions of Must-Links and Cannot-Links
 - Experiment
- Conclusion

Latent Dirichlet Allocation (LDA) [Blei+ JMLR2003]

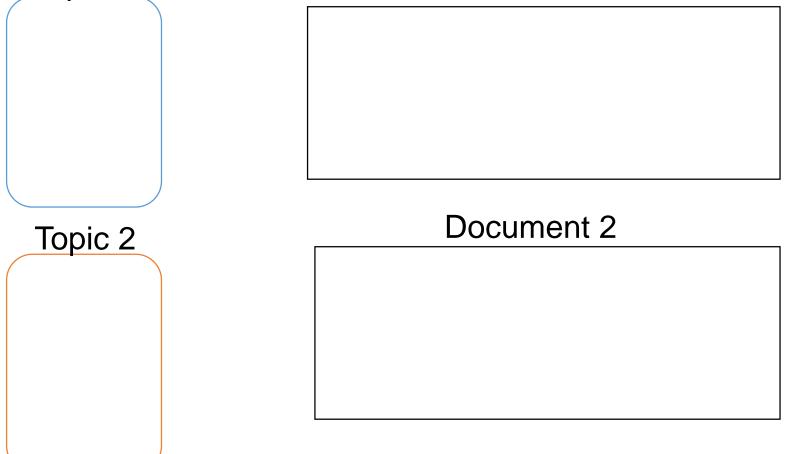
• Famous Topic modeling method

(i) Assume a generative model of documents

- Each topic is a distribution on words
- Each document is a distribution on topics
 - Taken from Dirichlet distributions to generate discrete distributions

(ii) Infer parameters for the two distributions inverting the generative model

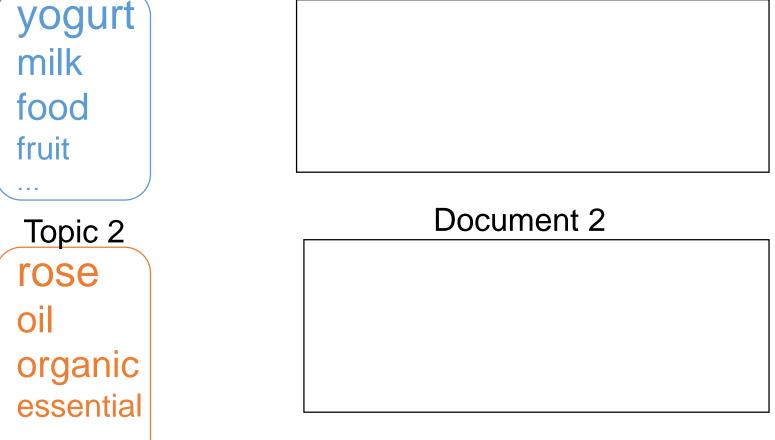
- Each topic is a distribution on words
- Each document is a distribution on topics Topic 1 Document 1



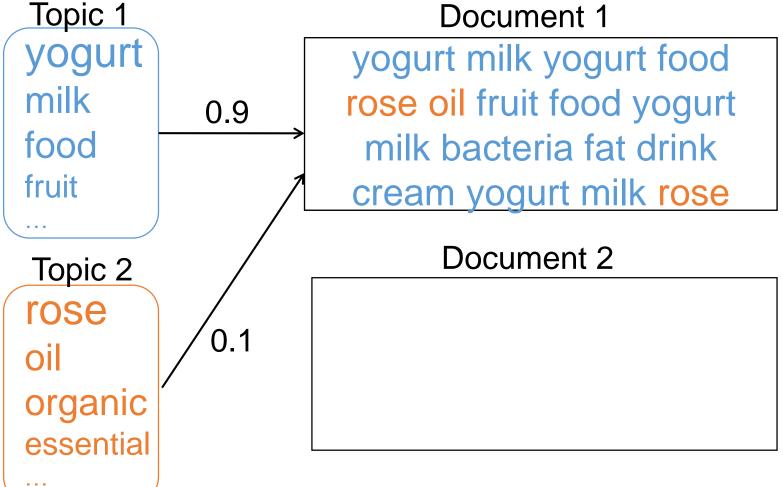
Each topic is a distribution on words

. . .

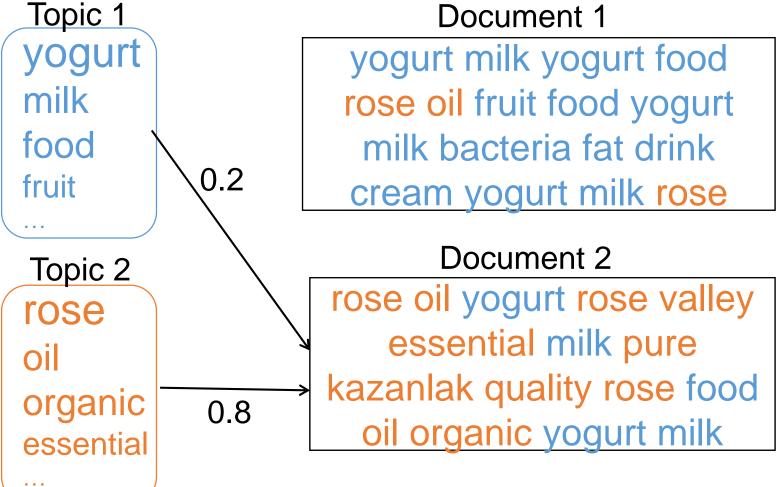
• Each document is a distribution on topics Topic 1 Document 1



- Each topic is a distribution on words
- Each document is a distribution on topics

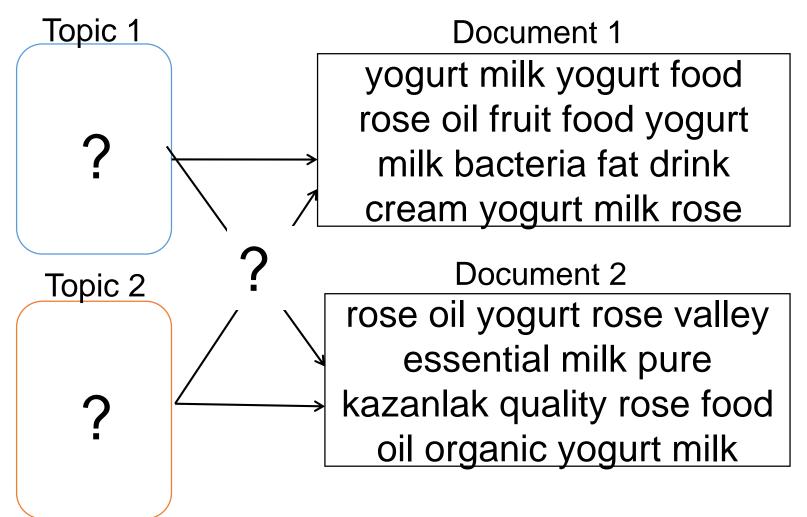


- Each topic is a distribution on words
- Each document is a distribution on topics



Parameter inference in LDA

 Infer word and topic distributions from a corpus inverting the generative process

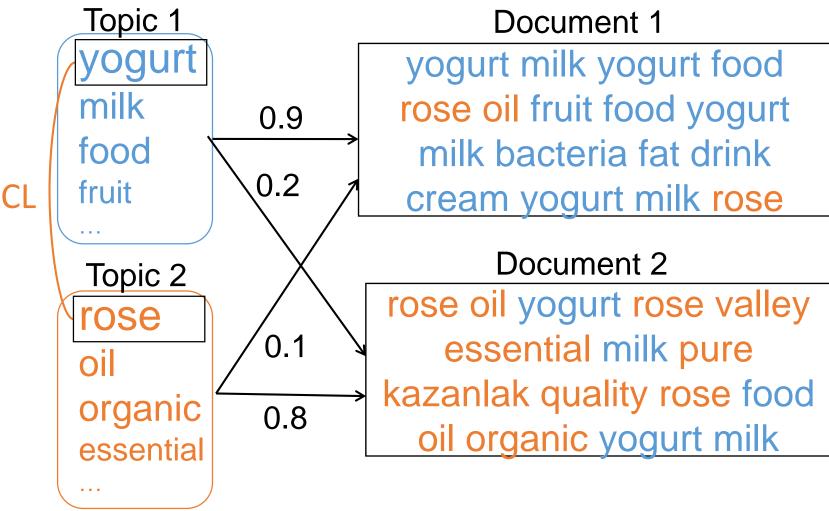


LDA-DF [Andrzejewski+ ICML2009]

- Semi-supervised extension of LDA
 - Only conjunction of Must-Links and Cannot-Links
 - Must-Link(A,B) : A and B appear in the same topic
 - Cannot-Link(A,B) : A and B don't appear in the same topic
- Extending the generative process
 - Each topic is a **constrained** distribution on words
 - Taken from a <u>Dirichlet tree distribution</u>, which is a generalization of a Dirichlet distribution
 - Each document is a distribution on topics
 - Taken from a Dirichlet distribution

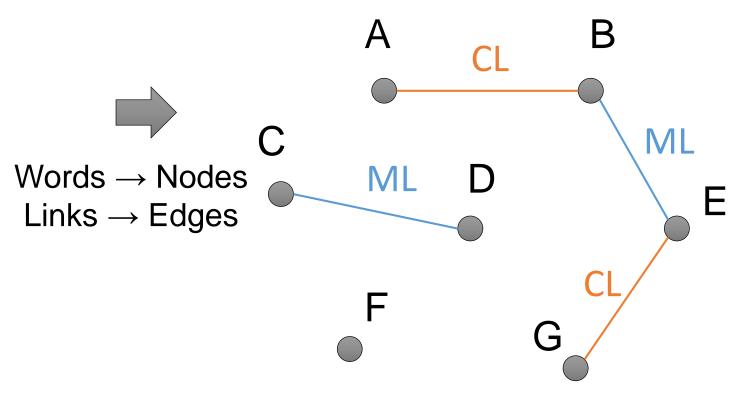
Generative process of LDA-DF

• Always generates a distribution, where yogurt and rose do not appear in the same topic.

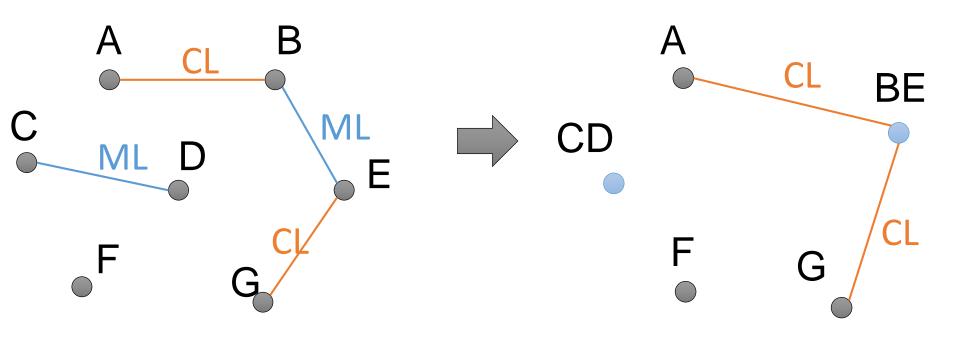


- 1. Map links to a graph
- 2. Contract Must-Links
- 3. Extract the maximal independent sets (MIS)
- 4. Generate a distribution based on each MIS

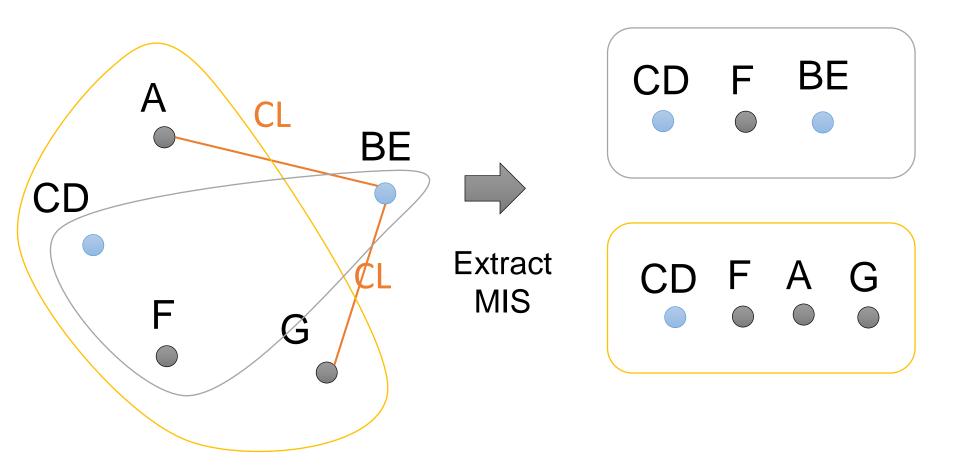
- 1. Map links to a graph
 - Any conjunction of links can be mapped to a graph Cannot-Link(A,B) ∧ Cannot-Link(E,G) ∧ Must-Link(B,E) ∧ Must-Link(C,D)



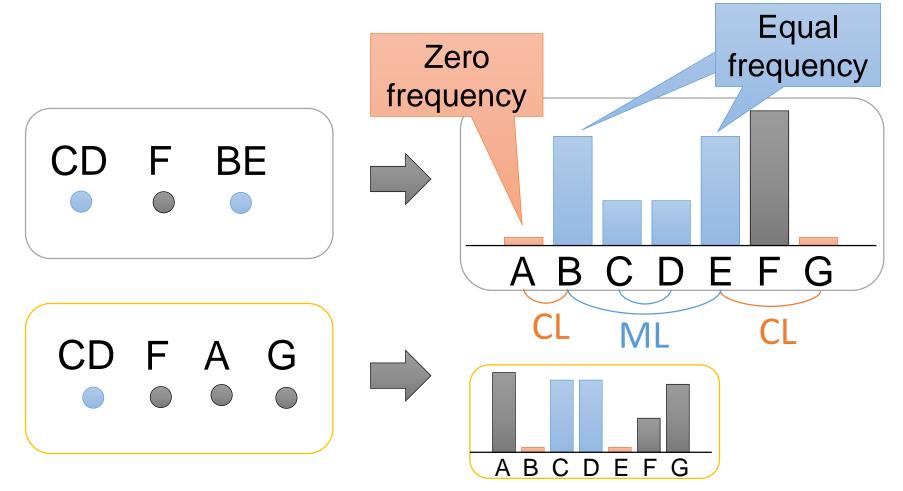
- 2. Contract Must-Links
 - Regard two words on each Must-Link as one word



- 3. Extract the maximal independent sets (MIS)
 - MIS = Maximal set of nodes without edges



- 4. Generate a distribution based on each MIS
 - Equalize the frequencies of contracted words
 - Zero the frequencies of words not in the MIS



This work

- Algorithm to generate <u>logically</u> constrained distributions on LDA-DF
 - We can not apply the existing algorithm

(¬ Cannot-Link(A,B) V Must-Link(A,C)) ∧ Cannot-Link(B,C)

Words \rightarrow Nodes Links \rightarrow Edges

This constraint cannot be mapped to a graph

Negations

- Delete negations (\neg) in a preprocessing stage
 - Weak negation: ¬ Must-Link(A,B) = no constraint (A and B **need not** appear in the same topic)
 - Strong negation: ¬ Must-Link(A,B) = Cannot-Link(A,B) (A and B must not appear in the same topic)

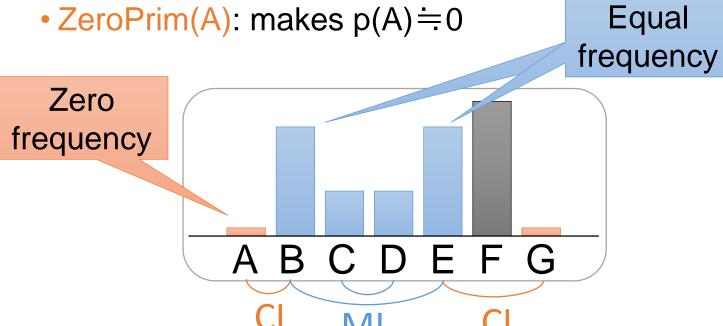
(Must-Link(A,B) ∨Must-Link(A,C)) ∧Cannot-Link(B,C)

Focus only on conjunctions and disjunctions

Key observation for logical expressions

 Any constrained distribution is represented by a conjunctive expression by two primitives

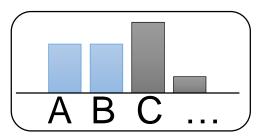
• EqualPrim(A, B): makes $p(A) \doteq p(B)$



EqualPrim(B, E) \land EqualPrim(C, D) \land ZeroPrim(A) \land ZeroPrim(G)

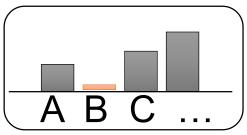
Substitution of links with primitives

Must-Link(A,B) = EqualPrim(A,B)



Cannot-Links(A,B) = ZeroPrim(A) V ZeroPrim(B)

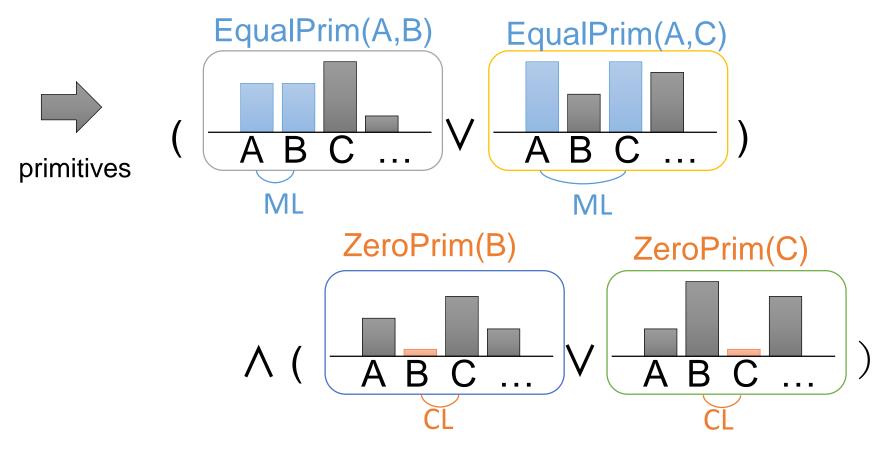




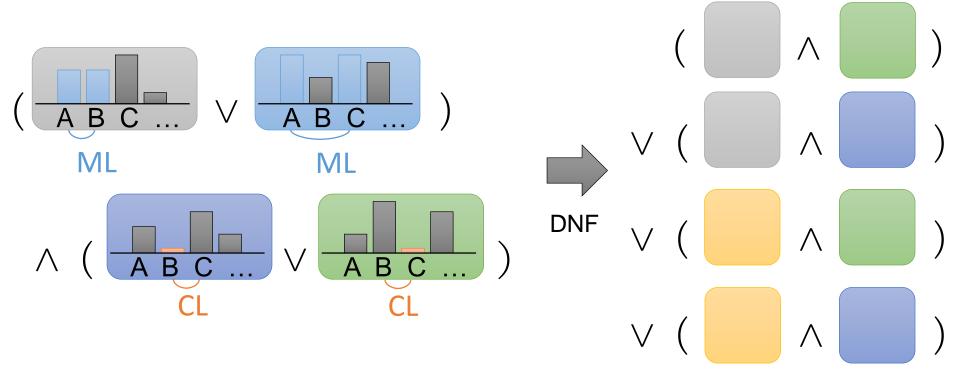
These two distributions satisfy Cannot-Link(A,B)

- 1. Substitute links with primitives
- 2. Calculate the minimum disjunctive normal form (DNF) of the primitives
- 3. Generate distributions for each conjunction of the DNF

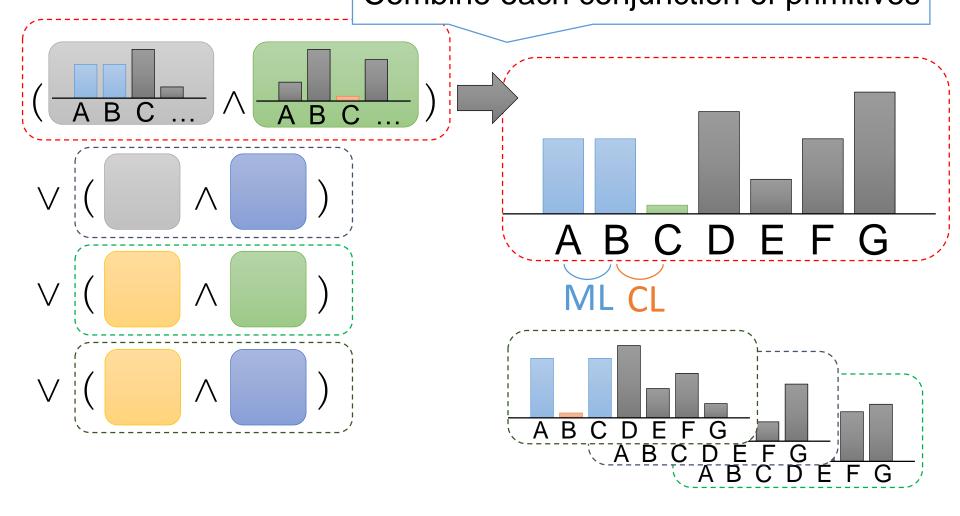
Substitute links with primitives
 (Must-Link(A,B) ∨ Must-Link(A,C))
 ∧ Cannot-Link(B,C)



- 2. Calculate the minimum disjunctive normal form (DNF) of the primitives
 - DNF = Disjunction of conjunctions of primitives

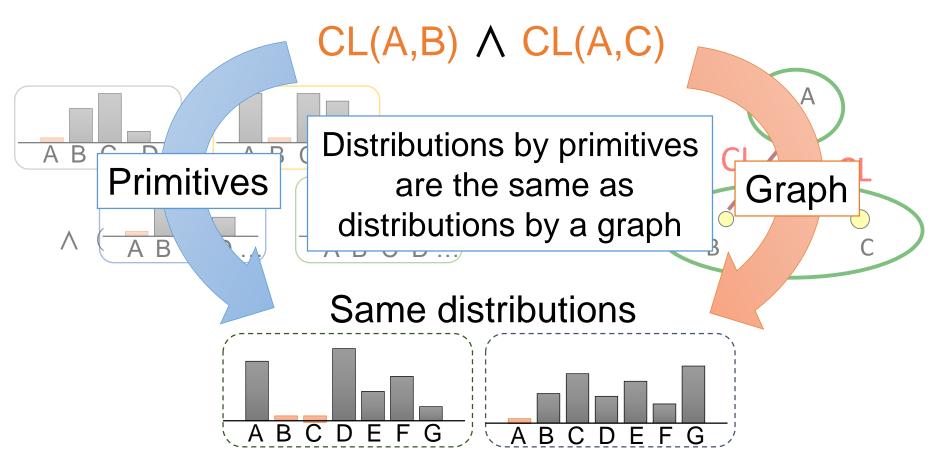


3. Generate distributions for each conjunction of the DNF Combine each conjunction of primitives



Correctness of our method

• [Theorem] Our method and the existing method are asymptotically equivalent w.r.t. <u>conjunctive</u> <u>expressions of links</u>



Customization of new links

- Isolate-Link (ISL)
 - $X_1,...,X_n$ do not appear (nearly) (Remove unnecessary words and stop words)

 $ISL(X_1,...,X_n) = \bigwedge_{i=1}^n \operatorname{ZeroPrim}(X_i)$

- Imply-Link (IL)
 - B appears if A appears in a topic (A→B) (Use when B has multiple meanings)

 $IL(A, B) = EqualPrim(A, B) \lor ZeroPrim(A)$

• Extended Imply-Link (XIL)

• Y appears if X_1, \dots, X_n appear in a topic $(X_1, \dots, X_n \rightarrow Y)$

 $XIL(X_1,...,X_n,Y) = \bigwedge_{i=1}^n EqualPrim(X_i,Y)$

 $\vee \bigvee_{i=1}^{n} \operatorname{ZeroPrim}(X_i)$

Movie review corpus (1000 reviews) [Pang&Lee ACL2004]
No constraints

Торіс	High frequency words
?	have give night film turn performance year mother take out
?	not life have own first only family tell yet moment even
?	movie have n't get good not see know just other time make
?	have black scene tom death die joe ryan man final private
?	film have n't not make out well see just very watch even
?	have film original new never more evil n't time power

All topics are unclear

- Movie review corpus (1000 reviews)
 - Isolate-Link(have, film, movie, not, n't)
 - Remove specified words as well as related unnecessary words

Торіс	High frequency words
(Isolated)	have film movie not good make n't character see more get
?	star war trek planet effect special lucas jedi science
Comedy	comedy funny laugh school hilarious evil power bulworth
Disney	disney voice mulan animated song feature tarzan animation
Family	life love family mother woman father child relationship
Thriller	truman murder killer death thriller carrey final detective

"Star Wars" and "Star Trek" are merged, although most topics are clear

- Movie review corpus (1000 reviews)
 - Isolate-Link(have, film, movie, not, n't)
 A Cannot-Link(jedi, trek)
 Dared to set t

Dared to select "jedi" since "star" and "war" are too common

Торіс	High frequency words
(Isolated)	have film movie not make good n't character see more get
Star Wars	star war lucas effect jedi special matrix menace computer
Comedy	funny comedy laugh get hilarious high joke humor bob smith
Disney	disney truman voice toy show animation animated tarzan
Family	family father mother boy child son parent wife performance
Thriller	killer murder case lawyer man david prison performance

"Star Trek" disappears, altough "Star Wars" is obtained

- Movie review corpus (1000 reviews)
 - Isolate-Link(have, film, movie, not, n't)
 A Cannot-Link(jedi, trek)
 - ∧ (Must-Link(star, jedi) ∨ Must-Link(star, trek))

Торіс	High frequency words
(Isolated)	have film movie not make good n't character see more get
Star Wars	star war toy jedi menace phantom lucas burton planet
Star Trek	alien effect star science special trek action computer
Comedy	comedy funny laugh hilarious joke get ben john humor fun
Disney	disney voice animated mulan animation family tarzan shrek
Family	life love family man story child woman young mother
Thriller	scream horror flynt murder killer lawyer death sequel case

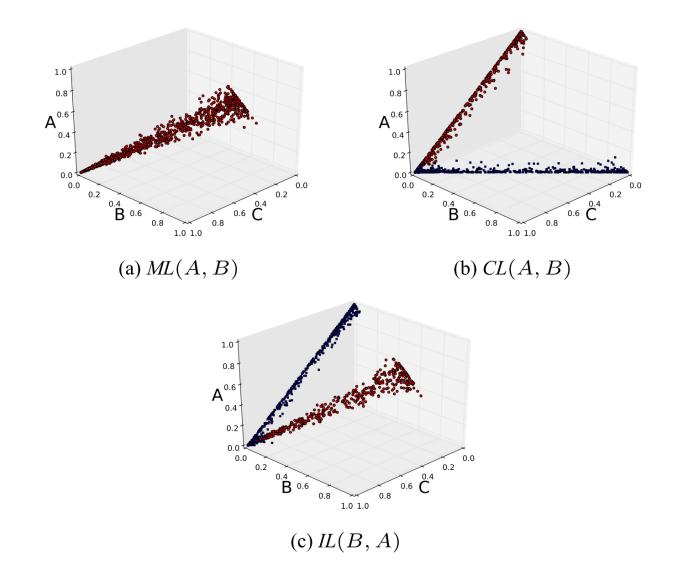
We obtained "Star Wars" and "Star Trek" appropriately

Conclusion

- Simple algorithm for logical constraints on words for topic modeling
 - Must-Link(A,B) : A and B appear in the same topic
 - Cannot-Link(A,B) : A and B do not appear in the same topic
- Theorem for the correctness of the algorithm
- Customization of new links
 - Isolate-Link($X_1, ..., X_n$): $X_1, ..., X_n$ disappear
 - Imply-Link(A, B): B appears if A appears in a topic
- Future Work
 - Comparative experiments on real corpora

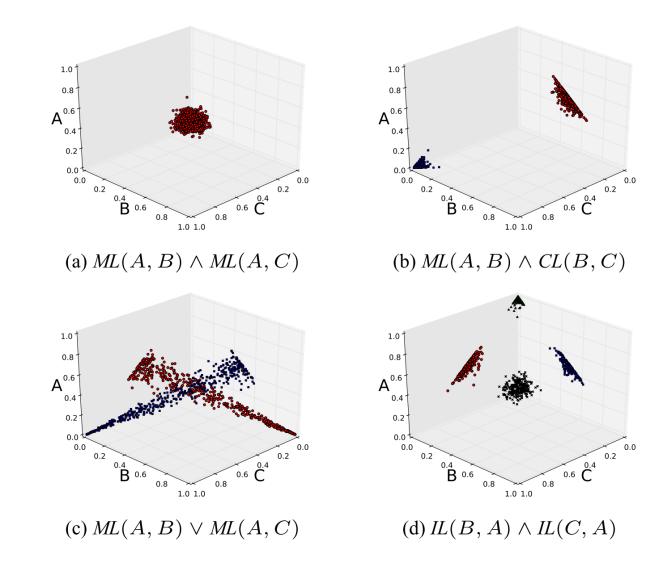
Thank you for your attention

Appendix: Visualization of Priors



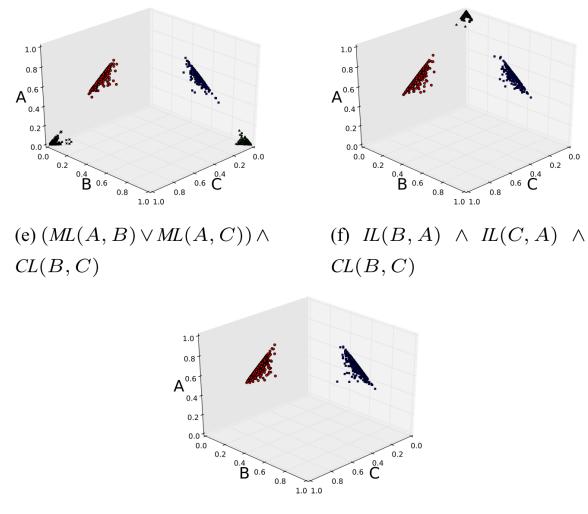
ML = Must-Link, CL = Cannot-Link, IL = Imply-Link

Appendix: Visualization of Priors



ML = Must-Link, CL = Cannot-Link, IL = Imply-Link

Appendix: Visualization of Priors



(g) $ML(C, A) \leq ML(C, B)$

ML = Must-Link, CL = Cannot-Link, IL = Imply-Link