
A Appendices

A.1 Basic facts about total variation distance

Over a countable space X and its discrete �-
algebra P(X), TVD is related to the `1 metric,
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A few useful basic facts to recall are

• TVD is a metric, thus it obeys the triangle
inequality.

• TVD is upper bounded by Kullback-Leibler
(KL) divergence via Pinsker’s inequal-
ity d(p, q) 
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is the KL di-

vergence measured in bits.

• TVD is sub-additive over product mea-
sures d(p1q1, p2q2)  d(p1, p1) + d(q1, q2),
and relatedly, KL divergence is addi-
tive DKL(p1q1||p2q2) = DKL(p1||p2) +
DKL(q1||q2).

As an alternative to the upper bound due to KL
divergence, we can also bound TVD via its sub-
additivity under product measures
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In fact, this can cover more general cases, such as
the analogous analysis of FLC (Yang et al., 2018)
which zeros out everything except for the most
likely tokens. We omit it due to page limit.

A.2 GPT-2 Language Model

The GPT-2 language model we used is a general
purpose language model from OpenAI trained on
WebText (Radford et al., 2019), which contains
millions of web pages covering diverse topics. Cit-
ing concerns of malicious use, OpenAI only pub-
licly released a small trained model with 117 mil-
lion parameters. And that is the particular lan-
guage model we use for empirical study in this
work, GPT-2-117M.

We choose to use GPT-2 as the base language
model in our work for several reasons. First,
GPT-2 is trained on a large amount of data that
we do not have access to. Second, it empiri-
cally achieves state-of-the-art performance across
seven challenging semantics tasks, which includes

question answering, reading comprehension, sum-
marization and translation. Third, its architec-
ture contains many late innovations such as trans-
former (Vaswani et al., 2017), instead of a recur-
rent neural network, and byte pair encoding for its
vocabulary (Sennrich et al., 2016).

A.3 Derivation of Sec. 3.1
The effective LM is equal to
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The KL divergence follows as
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where H(B) is the entropy of the partition
{B1, · · · , B2k}.


