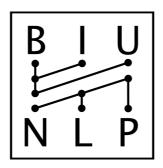
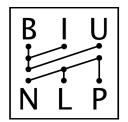
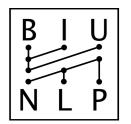
Split and Rephrase: Better Evaluation and a Stronger Baseline

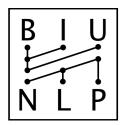
Roee Aharoni and Yoav Goldberg NLP Lab, Bar Ilan University, Israel ACL 2018







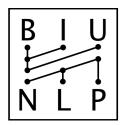
• Processing long, complex sentences is hard!



- Processing long, complex sentences is hard!
- Children, people with reading disabilities, L2 learners...

When writing articles here:

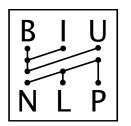
 Use Basic English vocabulary and shorter sentences. This allows people to understand normally complex terms or phrases.



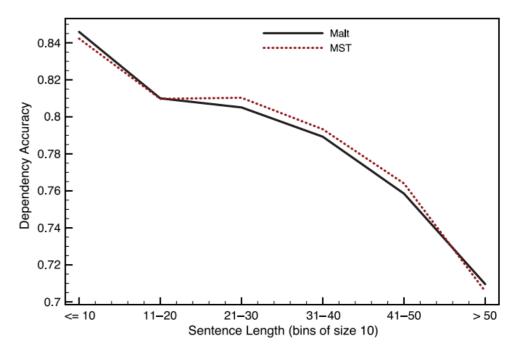
- Processing long, complex sentences is hard!
- Children, people with reading disabilities, L2 learners...
- Sentence level NLP systems:

When writing articles here:

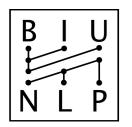
 Use Basic English vocabulary and shorter sentences. This allows people to understand normally complex terms or phrases.



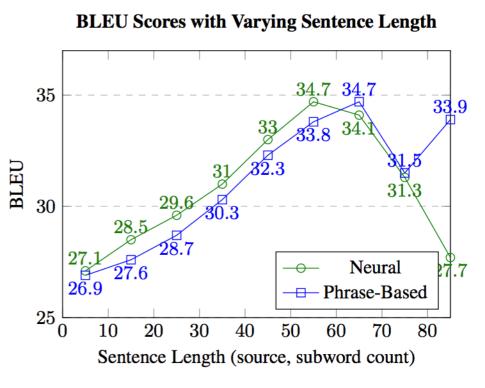
- Processing long, complex sentences is hard!
- Children, people with reading disabilities, L2 learners...
- Sentence level NLP systems:
 - Dependency Parsers



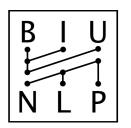
McDonald & Nivre, 2011



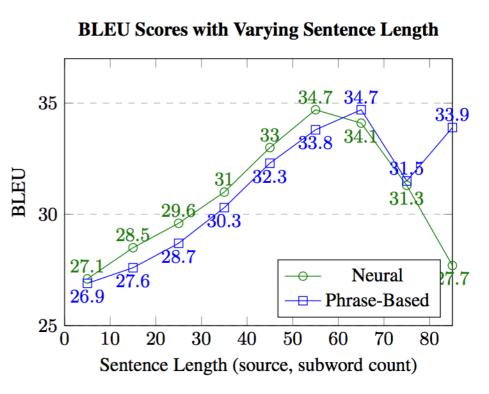
- Processing long, complex sentences is hard!
- Children, people with reading disabilities, L2 learners...
- Sentence level NLP systems:
 - Dependency Parsers
 - Neural Machine Translation



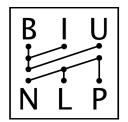
Koehn & Knowles, 2017

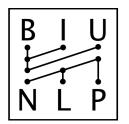


- Processing long, complex sentences is hard!
- Children, people with reading disabilities, L2 learners...
- Sentence level NLP systems:
 - Dependency Parsers
 - Neural Machine Translation
- Can we automatically break a complex sentence into several simple ones while preserving its meaning?

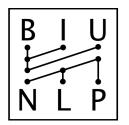


Koehn & Knowles, 2017

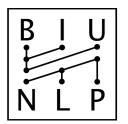




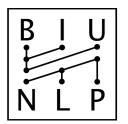
• Narayan, Gardent, Cohen & Shimorina, EMNLP 2017



- Narayan, Gardent, Cohen & Shimorina, EMNLP 2017
- Dataset, evaluation method, baseline models

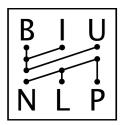


- Narayan, Gardent, Cohen & Shimorina, EMNLP 2017
- Dataset, evaluation method, baseline models
- Task definition: complex sentence -> several simple sentences with the same meaning



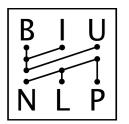
- Narayan, Gardent, Cohen & Shimorina, EMNLP 2017
- Dataset, evaluation method, baseline models
- Task definition: complex sentence -> several simple sentences with the same meaning

Alan Bean joined NASA in 1963 where he became a member of the Apollo 12 mission along with Alfred Worden as back up pilot and David Scott as commander .



- Narayan, Gardent, Cohen & Shimorina, EMNLP 2017
- Dataset, evaluation method, baseline models
- Task definition: complex sentence -> several simple sentences with the same meaning

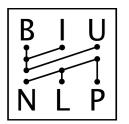
Alan Bean joined NASA in 1963 where he became a member of the Apollo 12 mission along with Alfred Worden as back up pilot and David Scott as commander .



- Narayan, Gardent, Cohen & Shimorina, EMNLP 2017
- Dataset, evaluation method, baseline models
- Task definition: complex sentence -> several simple sentences with the same meaning

Alan Bean joined NASA in 1963 where he became a member of the Apollo 12 mission along with Alfred Worden as back up pilot and David Scott as commander.

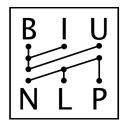
Alan Bean served as a crew member of Apollo 12 . Alfred Worden was the backup pilot of Apollo 12 . Apollo 12 was commanded by David Scott . Alan Bean was selected by Nasa in 1963 .

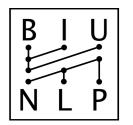


- Narayan, Gardent, Cohen & Shimorina, EMNLP 2017
- Dataset, evaluation method, baseline models
- Task definition: complex sentence -> several simple sentences with the same meaning
- Requires (a) identifying independent semantic units (b) rephrasing those units to single sentences

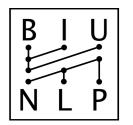
Alan Bean joined NASA in 1963 where he became a member of the Apollo 12 mission along with Alfred Worden as back up pilot and David Scott as commander .

Alan Bean served as a crew member of Apollo 12 . Alfred Worden was the backup pilot of Apollo 12 . Apollo 12 was commanded by David Scott . Alan Bean was selected by Nasa in 1963 .

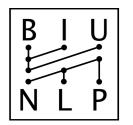




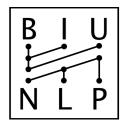
• We show that simple neural models seem to perform very on the original benchmark due to **memorization** of the training set

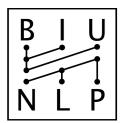


- We show that simple neural models seem to perform very on the original benchmark due to **memorization** of the training set
- We propose a **more challenging data split** for the task to discourage memorization



- We show that simple neural models seem to perform very on the original benchmark due to **memorization** of the training set
- We propose a **more challenging data split** for the task to discourage memorization
- We perform automatic evaluation and error analysis on the new benchmark, showing that the task is **still far from being solved**



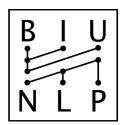


Simple RDF Triples (facts from DBpedia)

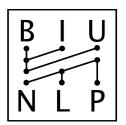
<Alan_Bean | nationality | United_States>

<Alan_Bean | mission | Apollo_12>

<Alan_Bean | NASA selection | 1963>



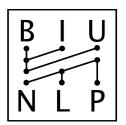
Simple RDF Triples (facts from DBpedia)		Simple Sentences
<alan_bean nationality="" united_states="" =""></alan_bean>		Alan Bean is a US national.
<alan_bean apollo_12="" mission="" =""></alan_bean>	\rightarrow	Alan Bean was on the crew of Apollo 12.
<alan_bean 1963="" nasa="" selection="" =""></alan_bean>	\rightarrow	Alan Bean was hired by NASA in 1963.



Simple RDF Triples (facts from DBpedia)		Simple Sentences
<alan_bean nationality="" united_states="" =""></alan_bean>		Alan Bean is a US national.
<alan_bean apollo_12="" mission="" =""></alan_bean>	\rightarrow	Alan Bean was on the crew of Apollo 12.
<alan_bean 1963="" nasa="" selection="" =""></alan_bean>		Alan Bean was hired by NASA in 1963.

Sets of RDF triples

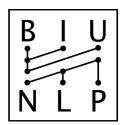
<Alan_Bean | nationality | United_States, Alan_Bean | mission | Apollo_12, Alan_Bean | NASA selection | 1963>

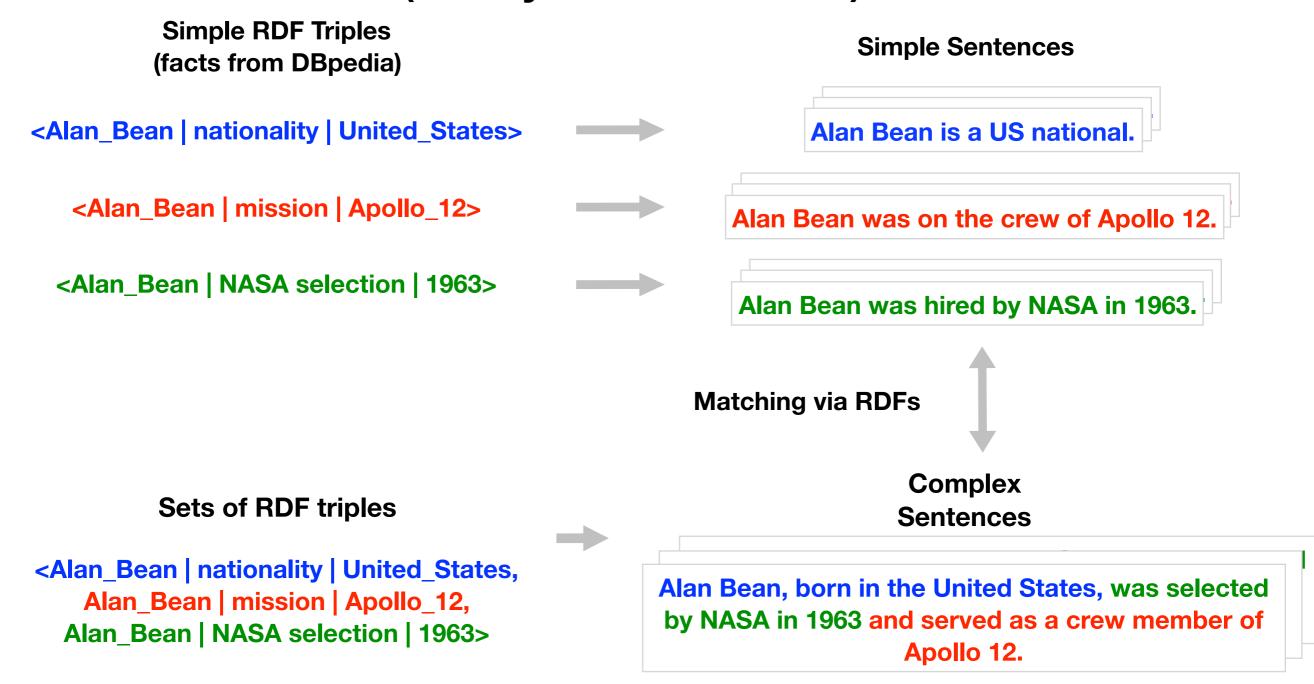


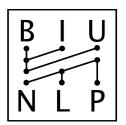
Simple RDF Triples (facts from DBpedia)		Simple Sentences
<alan_bean nationality="" united_states="" =""></alan_bean>		Alan Bean is a US national.
<alan_bean apollo_12="" mission="" =""></alan_bean>		Alan Bean was on the crew of Apollo 12.
<alan_bean 1963="" nasa="" selection="" =""></alan_bean>	\longrightarrow	Alan Bean was hired by NASA in 1963.

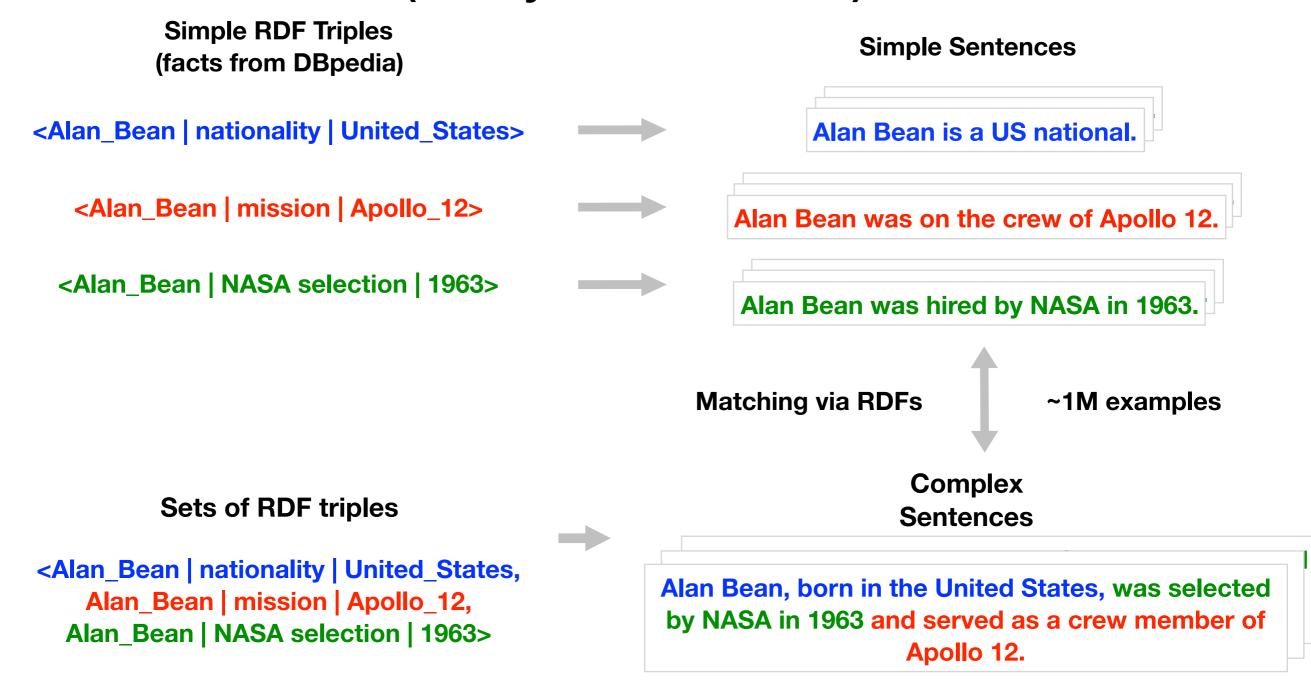
<Alan_Bean | nationality | United_States, Alan_Bean | mission | Apollo_12, Alan_Bean | NASA selection | 1963> Complex Sentences

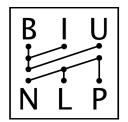
Alan Bean, born in the United States, was selected by NASA in 1963 and served as a crew member of Apollo 12.

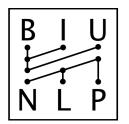




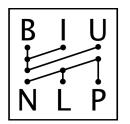




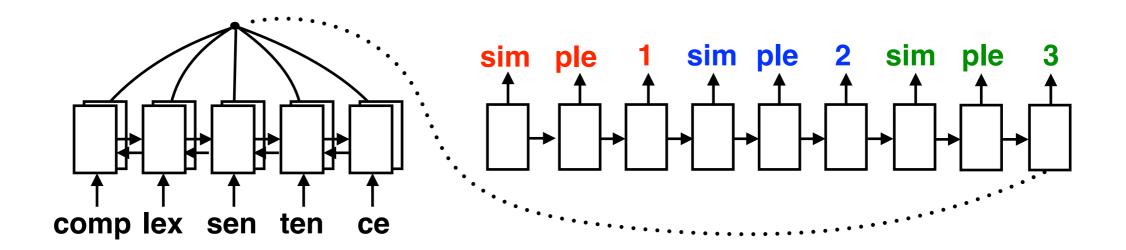


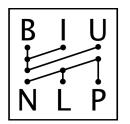


• ~1M training examples

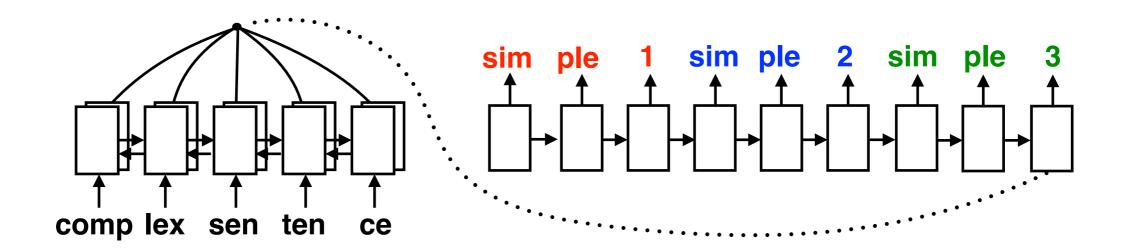


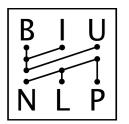
- ~1M training examples
- "Vanilla" LSTM seq2seq with attention



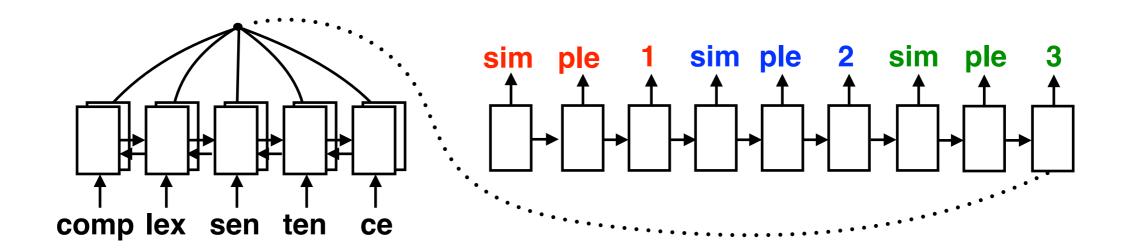


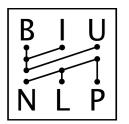
- ~1M training examples
- "Vanilla" LSTM seq2seq with attention
- Shared vocabulary between the encoder and the decoder



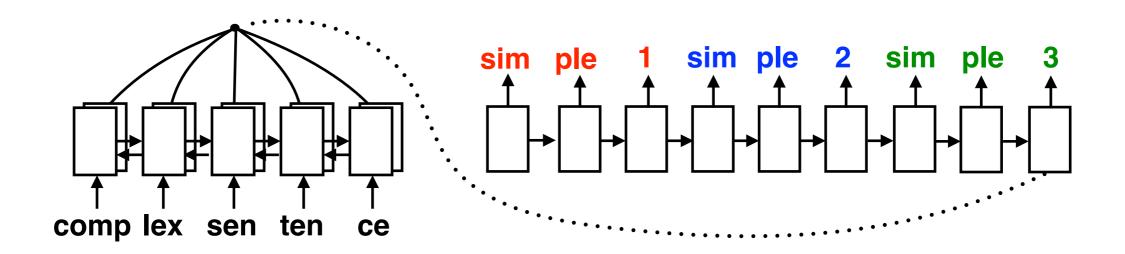


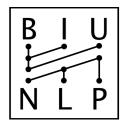
- ~1M training examples
- "Vanilla" LSTM seq2seq with attention
- Shared vocabulary between the encoder and the decoder
- Simple sentences predicted as a single sequence



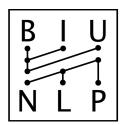


- ~1M training examples
- "Vanilla" LSTM seq2seq with attention
- Shared vocabulary between the encoder and the decoder
- Simple sentences predicted as a single sequence
- Evaluated using single-sentence, multi-reference BLEU as in Narayan et al. 2017



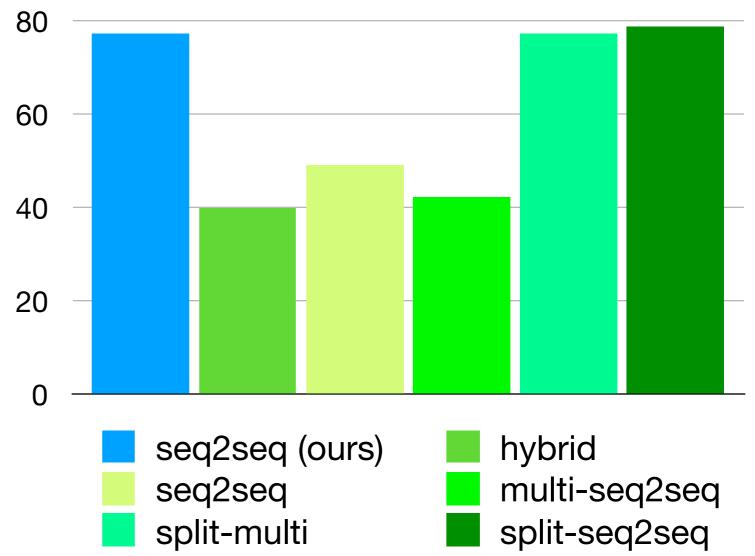


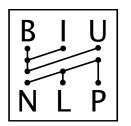
Preliminary Results



Preliminary Results

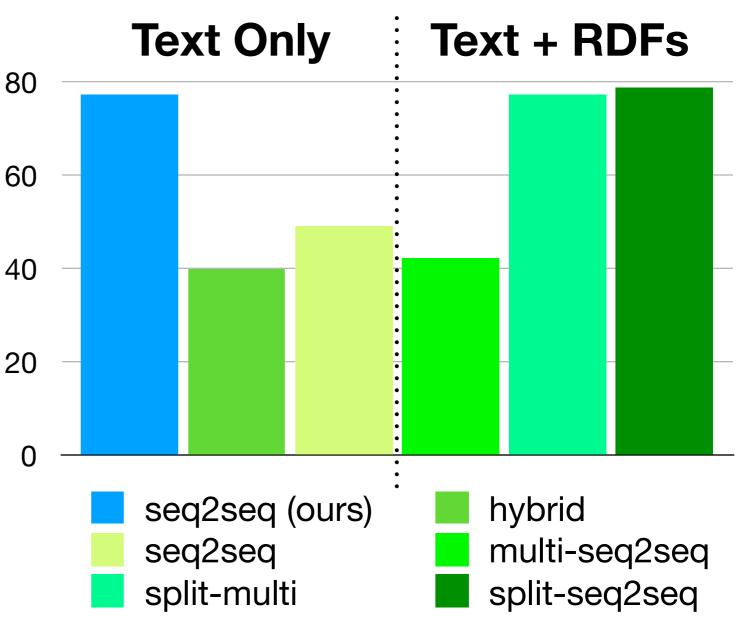
Our simple seq2seq
 baseline outperform all but
 one of the baselines from
 Narayan et al. 2017

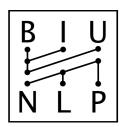




Preliminary Results

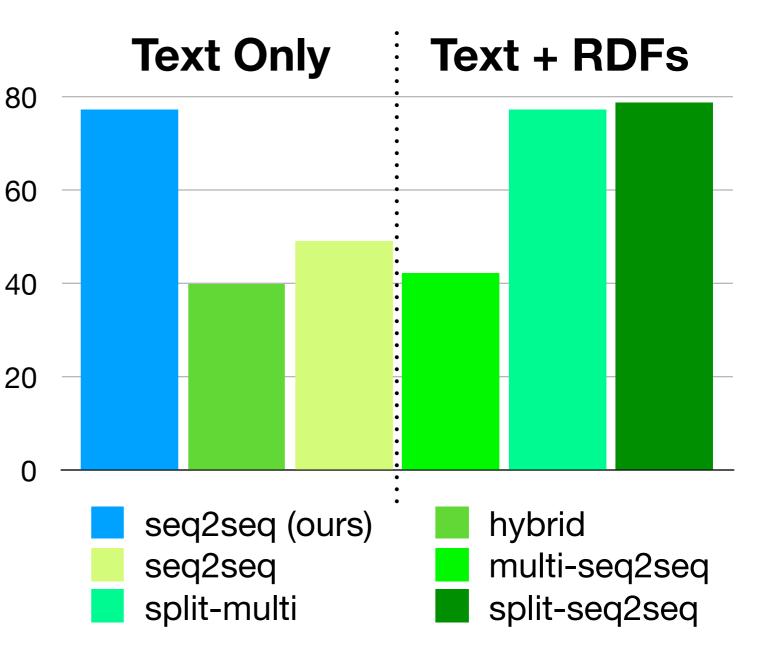
- Our simple seq2seq
 baseline outperform all but
 ⁸⁰
 one of the baselines from
 Narayan et al. 2017
 60
- Their best baselines were using the RDF structures as additional information

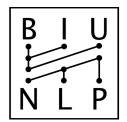


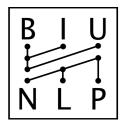


Preliminary Results

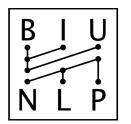
- Our simple seq2seq
 baseline outperform all but
 ⁸⁰
 one of the baselines from
 Narayan et al. 2017
 60
- Their best baselines were using the RDF structures as additional information
- Do the simple seq2seq model really performs so well?





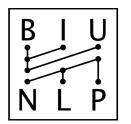


• In spite of the high BLEU scores, our neural models suffer from:



- In spite of the high BLEU scores, our neural models suffer from:
 - Missing facts appeared in the input but not in the output

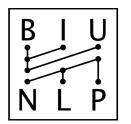
Input	Prediction
A Fortress of Grey Ice with ISBM 0-7653-	J.V. Jones authored A Fortress of Grey Ice .
0633-6 has 672 pages .	A Fortress of Grey Ice has 672 pages .
The address, 11 Diagonal Street is located	The address, 11 Diagonal Street is located in South Africa.
in South Africa where the leader is Cyril	The leader of South Africa is called Cyril Ramaphosa .
Ramaphosa and some Asian South Africans	The leader of South Africa is called Cyril Ramaphosa.
live.	The leader of South Africa is called Cyril Ramaphosa .



• In spite of the high BLEU scores, our neural models suffer from:

- Missing facts appeared in the input but not in the output
- Unsupported facts appeared in the output but not in the input

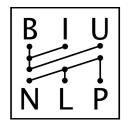
Input	Prediction
A Fortress of Grey Ice with ISBM 0-7653-	J.V. Jones authored A Fortress of Grey Ice .
0633-6 has 672 pages .	A Fortress of Grey Ice has 672 pages .
The address, 11 Diagonal Street is located	The address, 11 Diagonal Street is located in South Africa.
in South Africa where the leader is Cyril	The leader of South Africa is called Cyril Ramaphosa .
Ramaphosa and some Asian South Africans	The leader of South Africa is called Cyril Ramaphosa.
live.	The leader of South Africa is called Cyril Ramaphosa .

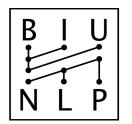


• In spite of the high BLEU scores, our neural models suffer from:

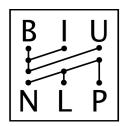
- Missing facts appeared in the input but not in the output
- Unsupported facts appeared in the output but not in the input
- Repeated facts appeared several times in the output

Input	Prediction
A Fortress of Grey Ice with ISBM 0-7653-	J.V. Jones authored A Fortress of Grey Ice .
0633-6 has 672 pages .	A Fortress of Grey Ice has 672 pages .
The address, 11 Diagonal Street is located	The address, 11 Diagonal Street is located in South Africa.
in South Africa where the leader is Cyril	The leader of South Africa is called Cyril Ramaphosa .
Ramaphosa and some Asian South Africans	The leader of South Africa is called Cyril Ramaphosa.
live.	The leader of South Africa is called Cyril Ramaphosa .

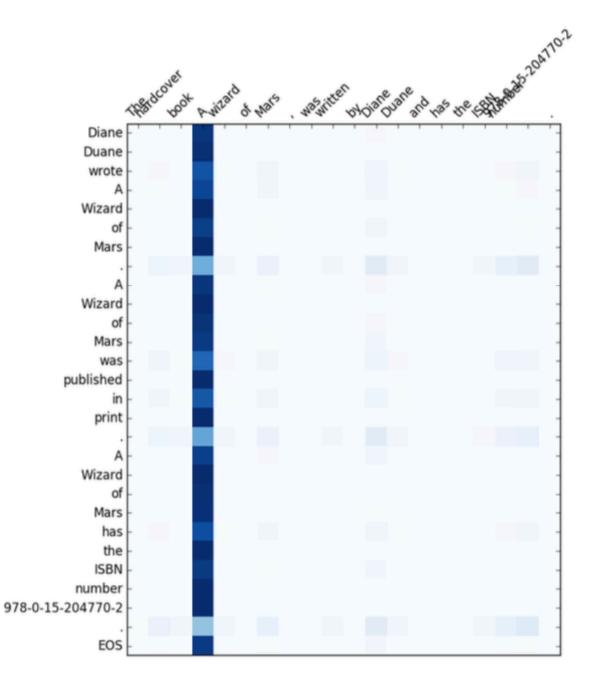


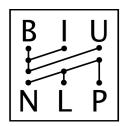


• Visualizing the attention weights we find an unexpected pattern

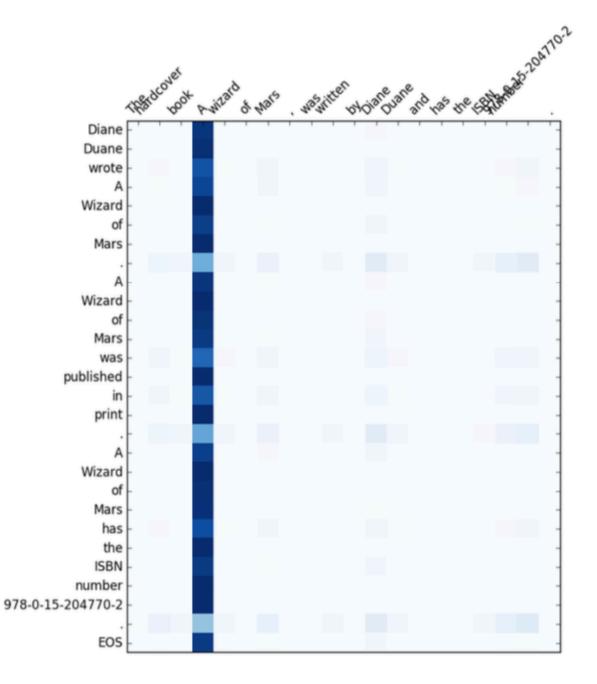


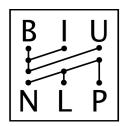
- Visualizing the attention weights we find an unexpected pattern
- The network mainly attends to a single token instead of spreading the attention



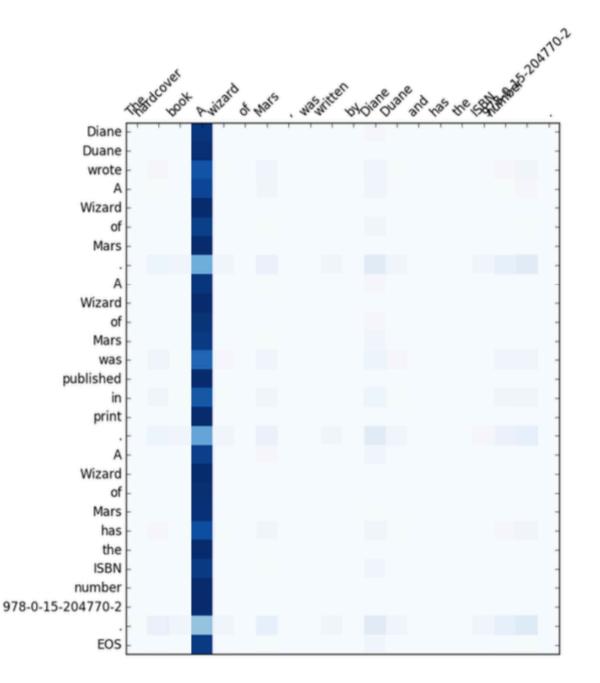


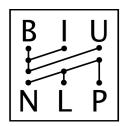
- Visualizing the attention weights we find an unexpected pattern
- The network mainly attends to a single token instead of spreading the attention
- This token was usually a part of the first mentioned entity



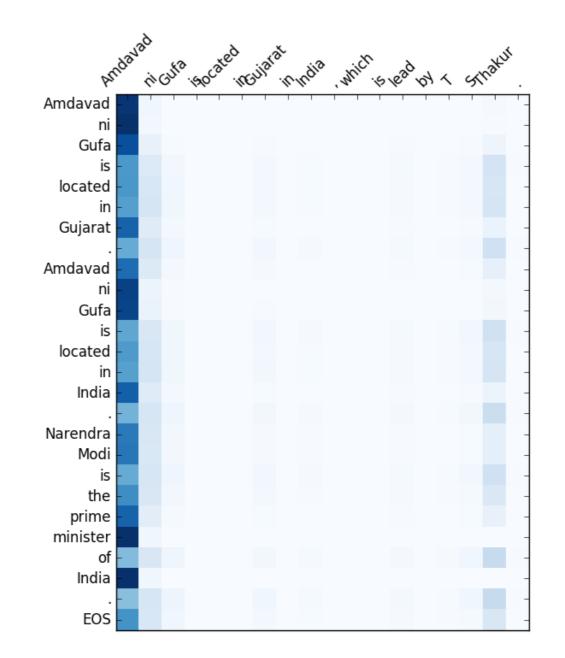


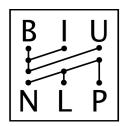
- Visualizing the attention weights we find an unexpected pattern
- The network mainly attends to a single token instead of spreading the attention
- This token was usually a part of the first mentioned entity
- Consistent among different input examples



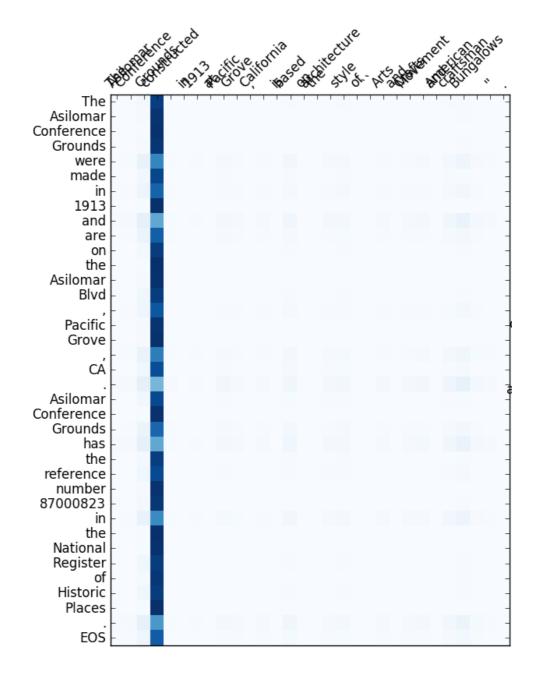


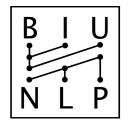
- Visualizing the attention weights we find an unexpected pattern
- The network mainly attends to a single token instead of spreading the attention
- This token was usually a part of the first mentioned entity
- Consistent among different input examples

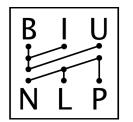




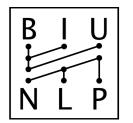
- Visualizing the attention weights we find an unexpected pattern
- The network mainly attends to a single token instead of spreading the attention
- This token was usually a part of the first mentioned entity
- Consistent among different input examples





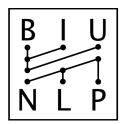


• In this stage we suspect that the network heavily **memorizes** entity-fact pairs



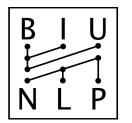
- In this stage we suspect that the network heavily **memorizes** entity-fact pairs
- We test this by introducing it with inputs consisting of repeated entities alone

Input	Prediction
Alan Shepard Alan Shepard Alan Shepard	



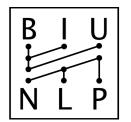
- In this stage we suspect that the network heavily **memorizes** entity-fact pairs
- We test this by introducing it with inputs consisting of repeated entities alone
- The network indeed generates facts it memorized about those specific entities

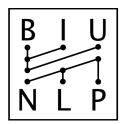
Input	Prediction
Alan Shepard Alan Shepard Alan Shepard	Alan Shepard is dead .
	Alan Shepard was a test pilot .



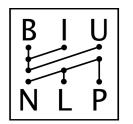
- In this stage we suspect that the network heavily **memorizes** entity-fact pairs
- We test this by introducing it with inputs consisting of repeated entities alone
- The network indeed generates facts it memorized about those specific entities

Input	Prediction
Alan Shepard Alan Shepard Alan Shepard	Alan Shepard is dead .
	Alan Shepard was a test pilot .
AFC Ajax AFC Ajax AFC Ajax	AFC Ajax 's manager is Jong Ajax .
	AFC Ajax N.V. own Sportpark De Toekomst .

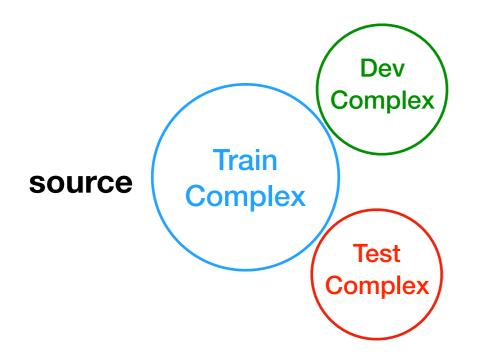


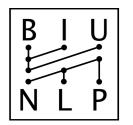


• The original dataset included overlap between the training/development/test sets

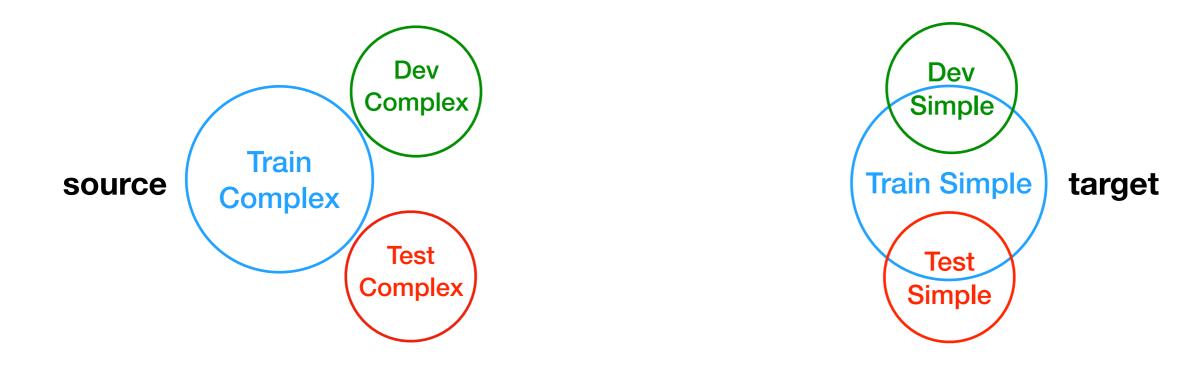


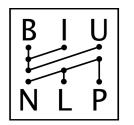
- The original dataset included overlap between the training/development/test sets
- When looking at the complex sentences side, there is no overlap



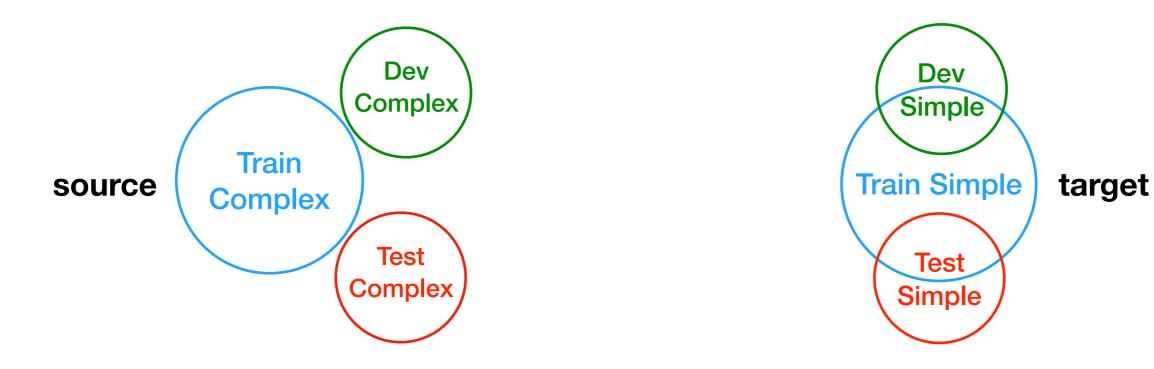


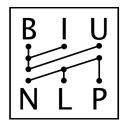
- The original dataset included overlap between the training/development/test sets
- When looking at the complex sentences side, there is no overlap
- On the other hand, most of the simple sentences did overlap (~90%)

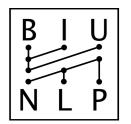


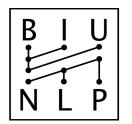


- The original dataset included overlap between the training/development/test sets
- When looking at the complex sentences side, there is no overlap
- On the other hand, most of the simple sentences did overlap (~90%)
- Makes memorization very effective "leakage" from train on the target side

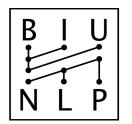




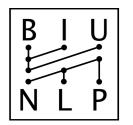




- To remedy this, we construct a new data split by using the RDF information:
 - Ensuring that all RDF relation types appear in the training set (enable generalization)

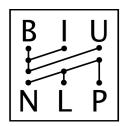


- Ensuring that all RDF relation types appear in the training set (enable generalization)
- Ensuring that no RDF triple (fact) appears in two different sets (reduce memorization)



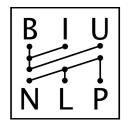
- Ensuring that all RDF relation types appear in the training set (enable generalization)
- Ensuring that no RDF triple (fact) appears in two different sets (reduce memorization)
- The resulting dataset has no overlapping simple sentences

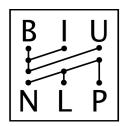
	Original Split	New Split
unique dev simple sentences in train	90.9%	0.09%
unique test simple sentences in train	89.8%	0%



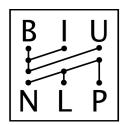
- Ensuring that all RDF relation types appear in the training set (enable generalization)
- Ensuring that no RDF triple (fact) appears in two different sets (reduce memorization)
- The resulting dataset has no overlapping simple sentences
- Has more unknown symbols in dev/test need better models!

	Original Split	New Split
unique dev simple sentences in train	90.9%	0.09%
unique test simple sentences in train	89.8%	0%
% dev vocabulary in train	97.2%	63 %
% test vocabulary in train	96.3%	61.7%

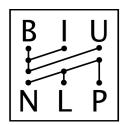




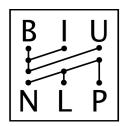
• To help with the increase in unknown words in the harder split, we incorporate a copy mechanism



- To help with the increase in unknown words in the harder split, we incorporate a copy mechanism
 - Gu et al. 2016, See et al. 2017, Merity et al. 2017

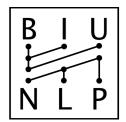


- To help with the increase in unknown words in the harder split, we incorporate a copy mechanism
 - Gu et al. 2016, See et al. 2017, Merity et al. 2017
- Uses a "copy switch" feed-forward NN component with a sigmoid-activated scalar output

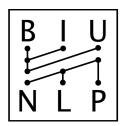


- To help with the increase in unknown words in the harder split, we incorporate a copy mechanism
 - Gu et al. 2016, See et al. 2017, Merity et al. 2017
- Uses a "copy switch" feed-forward NN component with a sigmoid-activated scalar output
- Controls the interpolation of the softmax probabilities and the copy probabilities over the input tokens in each decoder step

$$p(w) = p(z=1)p_{copy}(w) + p(z=0)p_{softmax}(w)$$

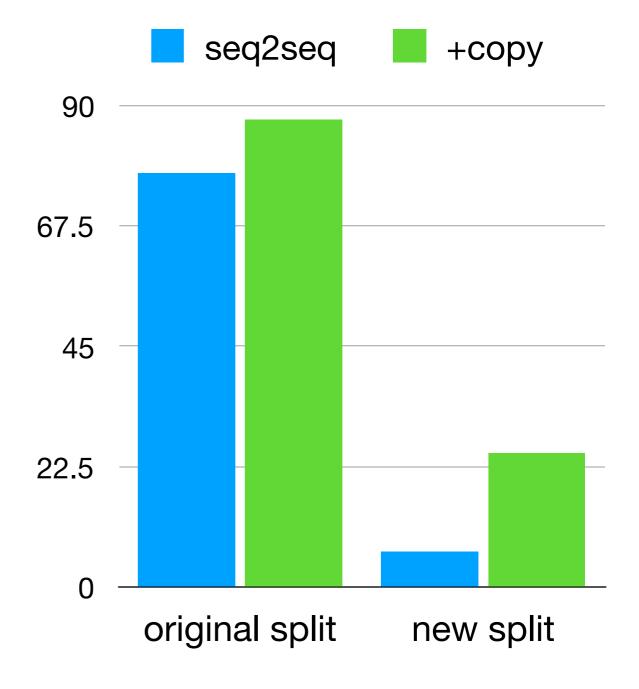


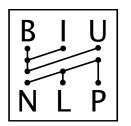
Results - New Split



Results - New Split

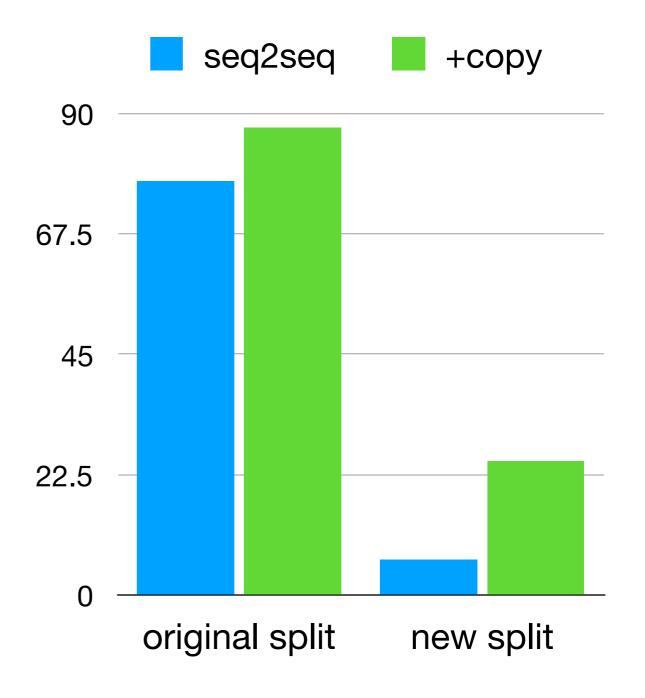
 Baseline seq2seq models completely break (BLEU < 7) on the new split

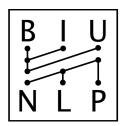




Results - New Split

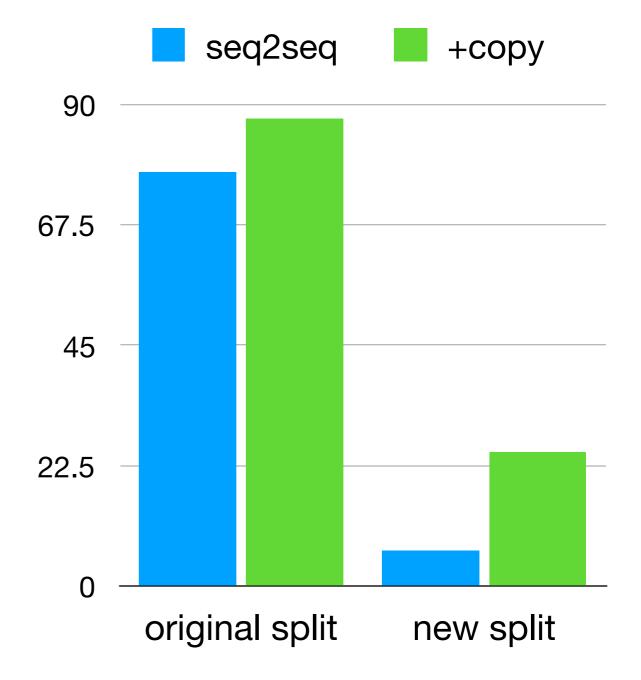
- Baseline seq2seq models completely break (BLEU < 7) on the new split
- Copy mechanism helps to generalize

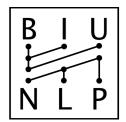




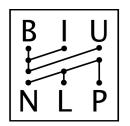
Results - New Split

- Baseline seq2seq models completely break (BLEU < 7) on the new split
- Copy mechanism helps to generalize
- Much lower than the original benchmark - memorization was crucial for the high BLEU



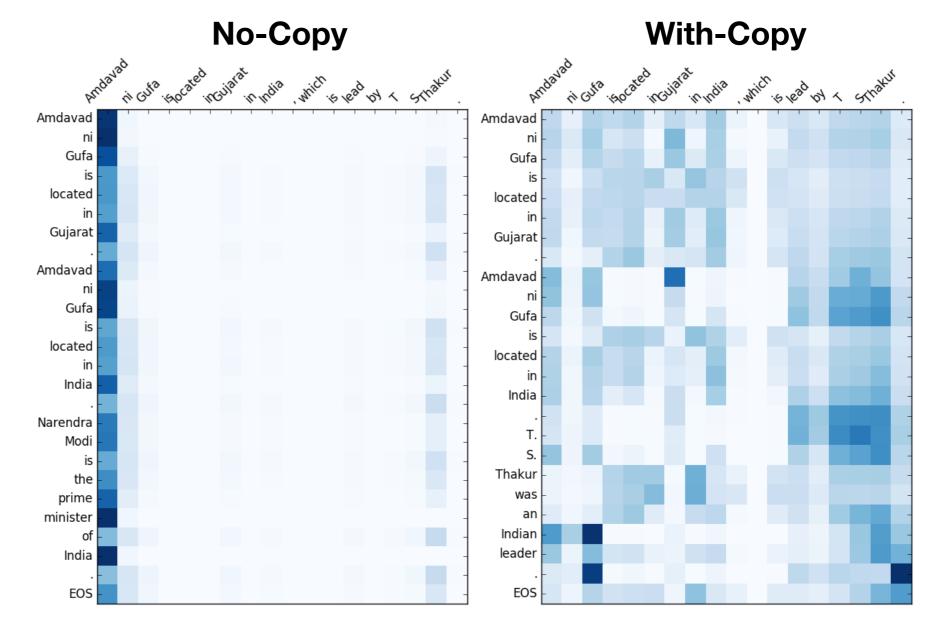


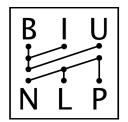
Copying and Attention

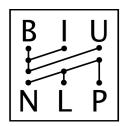


Copying and Attention

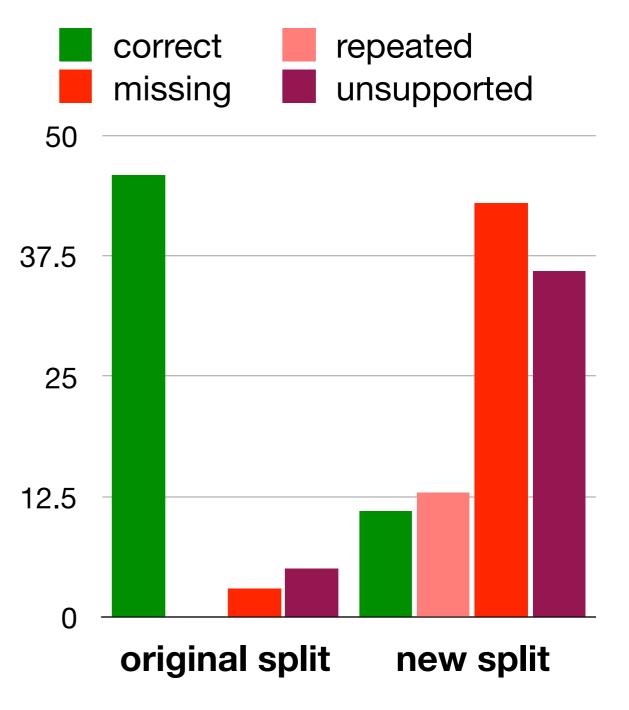
The copy-enhanced models spread the attention across the input tokens while improving results

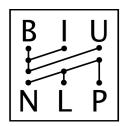




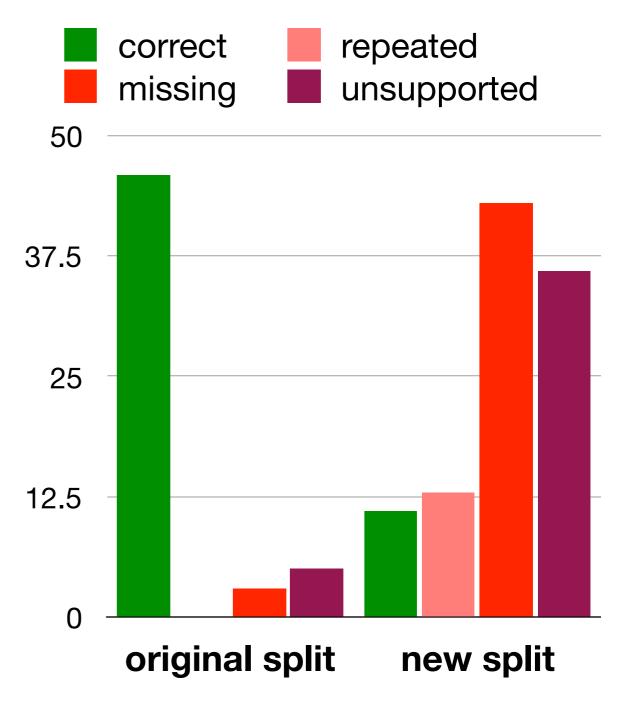


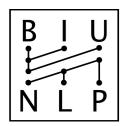
 On the original split the models did very well (due to memorization) with up to 91% correct simple sentences



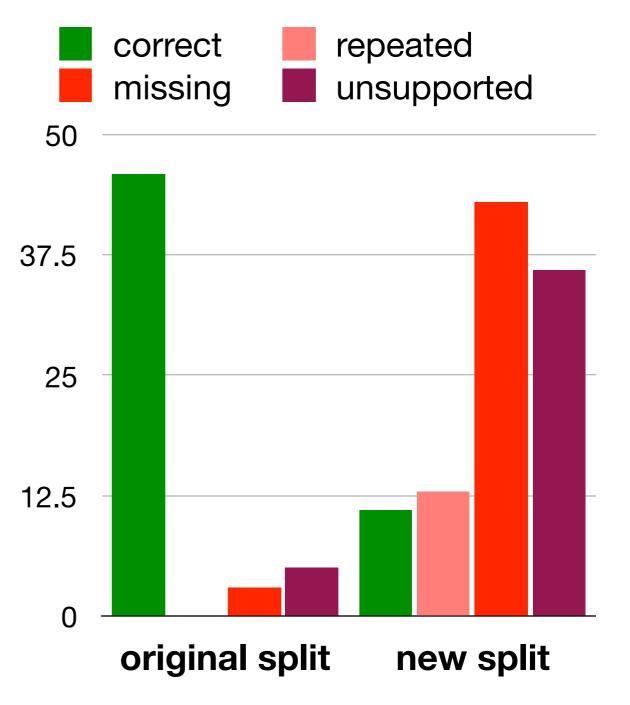


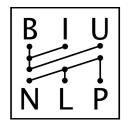
- On the original split the models did very well (due to memorization) with up to 91% correct simple sentences
- On the new benchmark the best model got only up to 20% correct simple sentences

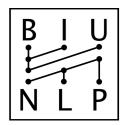




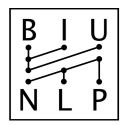
- On the original split the models did very well (due to memorization) with up to 91% correct simple sentences
- On the new benchmark the best model got only up to 20% correct simple sentences
- The task is much more challenging then previously demonstrated



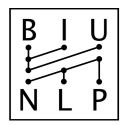




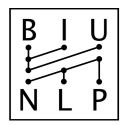
• Simple neural models seem to perform well due to memorization



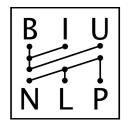
- Simple neural models seem to perform well due to **memorization**
- We propose a more challenging data split for the task to discourage this

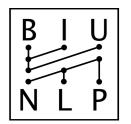


- Simple neural models seem to perform well due to **memorization**
- We propose a more challenging data split for the task to discourage this
 - A similar update was proposed by Narayan et al. in parallel to our work (WebSplit v1.0)

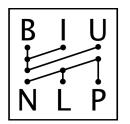


- Simple neural models seem to perform well due to **memorization**
- We propose a more challenging data split for the task to discourage this
 - A similar update was proposed by Narayan et al. in parallel to our work (WebSplit v1.0)
- We perform automatic evaluation and error analysis on the new benchmarks, showing that the task is still far from being solved

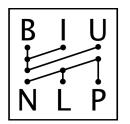




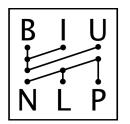
• Creating datasets is hard!



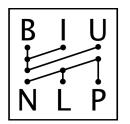
- Creating datasets is hard!
 - Think how models can "cheat"



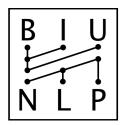
- Creating datasets is hard!
 - Think how models can "cheat"
 - Create a challenging evaluation environment to capture generalization



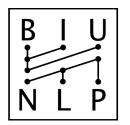
- Creating datasets is hard!
 - Think how models can "cheat"
 - Create a challenging evaluation environment to capture generalization
 - Look for leakage of train to dev/test



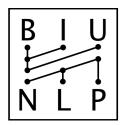
- Creating datasets is hard!
 - Think how models can "cheat"
 - Create a challenging evaluation environment to capture generalization
 - Look for leakage of train to dev/test
- Numbers can be misleading!



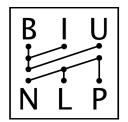
- Creating datasets is hard!
 - Think how models can "cheat"
 - Create a challenging evaluation environment to capture generalization
 - Look for leakage of train to dev/test
- Numbers can be misleading!
 - Look at the data



- Creating datasets is hard!
 - Think how models can "cheat"
 - Create a challenging evaluation environment to capture generalization
 - Look for leakage of train to dev/test
- Numbers can be misleading!
 - Look at the data
 - Look at the model



- Creating datasets is hard!
 - Think how models can "cheat"
 - Create a challenging evaluation environment to capture generalization
 - Look for leakage of train to dev/test
- Numbers can be misleading!
 - Look at the data
 - Look at the model
 - Error analysis



Thank You!

Link to code and data is available in the paper :)