

<u>Reina Akama¹</u> (reina.a@ecei.tohoku.ac.jp), Kento Watanabe², <u>Sho Yokoi^{1,4}, Sosuke Kobayashi³, Kentaro Inui^{1,4}</u> ¹Graduate School of Information Sciences, Tohoku University, ²National Institute of Advanced Industrial Science and Technology (AIST), ³Preferred Networks, Inc., ⁴RIKEN Center for Advanced Intelligence Project

Contributions

between words.

Proposed Method

Key Idea: "The style of all words in one utterance is consistent"

Simple stylistic vector (CBOW-ALL-CTX)		
Our hypothesis "The style of all words in one utterance is consistent"	"Yo	
<i>"words with similar style will occur with similar words within an utterance"</i>	"V	
$w_1 \cdots w_{t-1} w_t w_{t+1} w_{t+2} \cdots w_{ u_t } w_t w_1 \cdots$		
$P(w_t \mathcal{C}_{w_t}^{\text{all}}) \propto \exp\left(\tilde{\boldsymbol{v}}_{w_t} \cdot \frac{1}{ \mathcal{C}_{w_t}^{\text{all}} } \sum_{c \in \mathcal{C}_{w_t}^{\text{all}}} \boldsymbol{v}_c\right)$		
vectors capture stylistic word similarity	S	

Separation of Style and Meaning by Sampling Strategy

PROBLEM: Simple stylistic vector also captures the syntactic/semantic similarity, due to the prediction of nearby contexts.

SOLUTION: Learn two vectors simultaneously while separating style and semantic information by using the distance between the target and the context as a clue.

Proposed novel style-sensitive word vectors in unsupervised manner. Created word pair data stylistically similar for evaluation. Demonstrated that proposed methods capture the stylistic similarity

Word Vector (CBOW)

Distributional hypothesis [Harris+ '54] ou shall know a word by the company it keeps"

words with similar meanings will occur with similar neighbors" [Schütze+ '95]

 $\cdots w_{t-1} w_t w_{t+1} w_{t+2} \cdots w_{|u_t|}, \cdots w_{|u_t|},$

$\mathcal{P}(w_t \mathcal{C}_{w_t}^{\text{near}}) \propto \exp(w_t \mathcal{C}_{w_t}^{\text{near}})$	$ig(ilde{m{v}}_{w_t}$.	$\frac{1}{ \mathcal{C}_{w_t}^{\mathrm{near}} }$	$-\sum_{c \in \mathcal{C}_{w_i}^{\mathrm{near}}} v_c ight)$
--	--------------------------	---	--

vectors capture syntactic and semantic word similarity

Context words are near target word: 2 Update both OOO and OOO. $P_1(w_t | \mathcal{C}_{w_t}^{\text{near}}) \propto \exp\left(\widetilde{m{v}}_{w_t} \cdot \frac{1}{|\mathcal{C}_{w_t}^{\text{near}}|} \sum_{c \in \mathcal{C}_{w_t}^{\text{near}}} m{v}_c
ight)$ 2 Context words are far from target word: Update only OOO . $P_2(w_t | \mathcal{C}_{w_t}^{ ext{dist}}) \propto \exp\left(\widetilde{m{x}}_{w_t} \cdot \frac{1}{|\mathcal{C}_{w_t}^{ ext{dist}}|} \sum_{c \in \mathcal{C}_{ ext{dist}}^{ ext{dist}}} m{x}_c
ight)$

③ Stylistic vectors and Baseline #3 captured stylistic similarity effectively. [©] Syntactic/semantic vectors and CBOW vectors captured syntactic similarity well. ^③ Stylistic vectors and CBOW vectors captured semantic similarity well, since topics are also consistent within an utterance. The 56th Annual Meeting of the Association for Computational Linguistics (July 18, 2018)

Unsupervised Learning of Style-sensitive Word Vectors

Experiments on Fan-fiction Corpus Training Setups

Training corpus: 30M utterances, vocabulary size 100K. Model settings: nearby window width 5, vector size 600 (each part 300).

Examples of Similar Words

words spaces	Stylistic vector space	S
guys	stuff guy bunch	
ninja	shinobi konoha genin	
俺 (I;male,colloquial)	おまえ(you;colloquial,rough) あいつ(he/she;colloquial,rough) ねえよ(not;colloquial,rough)	

[©] Two vectors captured stylistic and syntactic/semantic similarity, respectively.

Quantitative Evaluations

Stylistic sensitivity

Baselines

Correlation with human evaluation <u>about style</u> using our dataset.

Using crowd-sourcing

metrics		$ ho_{style}$	0	SYNTAX ACC	
			Psem	@5	@10
les	#1 w _t	12.1	27.8	86.3	85.2
selīr	#2 w _t	36.6	24.0	85.3	84.1
Ba	#3	56.1	15.9	59.4	58.8
Irs	Syntactic/semantic vector	9.6	18.1	88.0	87.0
5	Stylistic vector	51.3	28.9	68.3	66.2

yntactic/semantic vector space

boys humans girls

shinobi pirate soldier

僕(I;male,childish)

あたし(I;female,colloquial) 私(I;formal)

Created Japanese Stylistic Word Similarity Dataset

including 399 style-sensitive word pairs & 5 scaled scores Available on https://jqk09a.github.io/ style-sensitive-word-vectors/

> Syntactic sensitivity Concordance rate of syntactic features. $\mathbb{I}[\mathrm{POS}(w) = \mathrm{POS}(w')]$ Semantic sensitivity Correlation with human evaluation. a.k.a. word similarity task.