

USING PSEUDO-SENSES FOR IMPROVING THE EXTRACTION OF SYNONYMS FROM WORD EMBEDDINGS

Olivier Ferret

CONTEXT AND OBJECTIVES

• Context

- semantic specialization of word embeddings
- most approaches following Retrofitting [Faruqui et al., 2015]
 - a priori set of lexical semantic relations
 - bring word vectors closer if they are part of similarity relations (synonymy, lexical association ...)
 - move them away from each other if they are part of dissimilarity relations (antonymy ...)

• Objectives of Pseudofit

improving word embeddings for semantic similarity without a priori lexical relations

PRINCIPLES: GENERAL PERSPECTIVE

• Theoritical hypothesis

- homogeneous corpus C
- equal split of C in 2 parts: C1 and C2
- distributional representation of a word w from a corpus C = distrep_C(w) = set of contexts
- distrep_{C1}(w) = distrep_{C2}(w)

• In practice

• distrep_{C1}(w) \neq distrep_{C2}(w)

Hypothesis

- differences between distrep_{C1}(w) and distrep_{C2}(w) are contingent
- bringing distrep_{C1}(w) and distrep_{C2}(w) closer → more general (and better) distributional representation of w

PRINCIPLES: IMPLEMENTATION

- Distributional representations
 - dense representations: Skip-Gram [Mikolov et al., 2013]

• Notion of pseudo-sense

- 2 sub-corpora \rightarrow 2 representation spaces
 - require projection in a shared space \rightarrow source of disturbances
- instead, 1 corpus but 2 pseudo-senses for each word
- pseudo-sense
 - arbitrarily split the occurrences of a word into two or more subsets

Overall process

- generation of distributional contexts for pseudo-senses
- turning pseudo-sense contexts into dense representations
- convergence of pseudo-word representations → more general word representation

REPRESENTATIONS OF PSEUDO-WORDS

• Generation of contexts

- 2 successive occurrences of a word \rightarrow 2 different pseudo-senses
- 3 representations / word
 - 2 pseudo-senses + word itself → for each occurrence, generation of contexts for the current pseudo-sense + word
 - « frequency trick »: adding the representation of the word → avoiding the impact of having half the occurrences for each pseudo-sense

A policeman₁ was arrested by another policeman₂.

TARGET	CONTEXT	TARGET	CONTEXT	TARGET	CONTEXT
policeman	а	policeman ₁	а	policeman ₂	another
policeman	be	policeman ₁	be	policeman ₂	by
policeman	arrest (x2)	policeman ₁	arrest	policeman ₂	arrest
policeman	by (×2)	policeman ₁	by		
policeman	another				

- Building of dense representations
 - word2vecf [Levy & Goldberg, 2014]

CONVERGENCE OF PSEUDO-WORD REPRESENTATIONS

• Principles

- 3 representations / word w: v (word); v1, v2 (pseudo-senses)
- v, v1 and V2: supposed to be semantically equivalent
- \rightarrow 3 similarity relations: (v, v₁), (v, v₂) and (v₁, v₂)
- application of a semantic specialization method for word embeddings to v,
 v1 and v2 with the similarity relations between them
- final representation for w: v after its « specialization »

Implementation

- specialization method: PARAGRAM [Wieting et al., 2015]
 - comparable to Retrofitting but includes an automatically generated repelling component
 - for each target word to specialize, selection of a repelling word, either randomly or according to their dissimilarity

INTRINSIC EVALUATION

Experimental setup

- 1 billion lemmatized words randomly selected from the Annotated English Gigaword corpus [Napoles et al., 2012] at the level of sentences
- word embeddings built with the best parameters from [Baroni et al., 2014]
- focus on nouns

• Word similarity evaluation

• Spearman's rank correlation between human judgments and similarity between vectors for 3 representative datasets of word pairs

	SimLex-999	MEN	Mturk 771
INITIAL	49.5	78.3	65.6
Pseudofit	51.2	79.9	68.0
Retrofitting	49.6	77.4	65.0
Counter-fitting	49.5	77.2	64.9

SYNONYM EXTRACTION

Evaluation framework

- Gold Standard: WordNet's synonyms
 - 2.9 / word
- evaluated words = 11,481 nouns
 - frequency > 20
- for each evaluated noun, retrieval of its 100 nearest neighbors
 - neighbors ranked from most similar (Cosine) to less similar
- Information Retrieval (IR) paradigm
 - evaluated word \equiv query; neighbors \equiv docs
 - IR measures: MAP, R-precision, precision@{1,2,5}

	R-prec.	MAP	P@1	P@2	P@5
INITIAL	13.0	15.2	18.3	13.1	7.7
Pseudofit	+2.5	+3.3	+3.0	+2.5	+1.8

SENTENCE SIMILARITY

Evaluation task

- Semantic Textual Similarity: STS Benchmark dataset [Cer et al., 2017]
- Pearson rank correlation between human judgments and similarity between sentences for a set of reference sentence pairs

• Computation of sentence similarity

- strong baseline approach based on word embeddings
- sentence representation: elementwise addition of the embeddings of the plain words of the sentence
 - use of Pseudofit_[max,fus-max-pooling] embeddings, defined for nouns, verbs and adjectives
- sentence similarity: *Cosine* between sentence representations

	ρ×100
INITIAL	63.2
Pseudofit[max,fus-max-pooling]	66.0
Best baseline (Cer et al., 2017)	56.5

CONCLUSIONS AND PERSPECTIVES

- To sum up
 - Pseudofit: method for improving word embeddings towards semantic similarity without external semantic relations
 - method based on the convergence of several representations built from the same corpus → more general representation
 - successful intrinsic and extrinsic evaluations for word similarity, synonym extraction and sentence similarity

Research directions

 transposition of Pseudofit with several corpora → link with researches about meta-embeddings and ensembles of word embeddings

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019