Compositional Representation of Morphologically-Rich Input for Neural Machine Translation

Morphology

Analytic (Isolating) Languages One word, one morpheme

เขา กำลัง เรียน ภาษา ไทย อยู่ Khaw **kamlang** rian phasaa thaai **yuu** S/he PROG study language Thai at She **is** study**ing** the Thai language.

> Synthetic Languages One word, multiple morphemes

Fusional Morphology Single inflectional morpheme to denote multiple grammatical, syntactic, or semantic features.

Я вижу при-дорож-н-ое кафе Ya vizhu pri-dorozh-n-oye kafe. I see.1Sg.Pres near-road-ADJ-Acc+Sg+Neu cafe.

Agglutinative Morphology Each morpheme corresponds to a separate semantic or syntactic feature.

I see a roadside cafe.

Arkadaş-ım-ın aşk-ı-sı-n.

friend-my-of love-DET-Pres-2Sg You are the love of my friend.

High morphological complexity leads to many rare surface forms in the vocabulary, that either do not fit in the limited NMT model dictionary, or, have poor internal representations

Results

Model	Vocabulary	Input	BLEU				
	Units	Representations	TR-EN	AR-EN	CS-EN	DE-EN	IT-EN
NMT with Sub-word Embeddings	Characters	Characters	12.29	8.95	13.42	21.32	22.88
	Char Trigrams	Char Trigrams	16.13	11.91	20.87	25.01	26.68
	Sub-words (BPE)	Sub-words (BPE)	16.79	11.14	21.99	26.61	27.02
	Sub-words (LMVR)	Sub-words (LMVR)	17.82	12.23	22.84	27.18	27.34
NMT	Char Trigrams	Sub-words (BPE)	15.40	11.50	21.67	27.05	27.80
with	Char Trigrams	Sub-words (LMVR)	16.63	13.29	23.07	26.86	26.84
Representations	Char Trigrams	Words	19.53	14.22	25.16	29.09	29.82
	Subwords (BPE)	Words	12.64	11.51	23.13	27.10	27.96
	Subwords (LMVR)	Words	18.90	13.55	24.31	28.07	28.83

Duygu Ataman¹² and Marcello Federico¹³

¹ Fondazione Bruno Kessler, Trento, Italy ² Università degli Studi di Trento, Italy ³ MMT Srl, Trento, Italy <u>ataman@fbk.eu, federico@fbk.eu</u>

> Input: BPE **NMT** Output Input: Comp NMT Outpu Reference

- Compo ly with Results
- comple

The 56th Annual Meeting of the Association for Computational Linguistics, 15-20 July 2018, Melbourne.

ith		
onal		
tions		
iome		
	compositional representation	
Idi dim im\$	bi-directional GRUs n-gram embeddings	
s by integ into the m	rating odel	
lexical context, an	approximation	
nin words, providin Atribution to the wo	ng cues on their ord meaning)	
linear combinatio	on of forward (f)	
$a_b + b$ of NMT model	parameters to	
		l

			Evalu
Language	Family	Morphological Complexity	Morphologi Typology
Arabic	Semitic	High	Templatic
Czech	Slavic	High	Mostly Fusional, Partially Agglutinativ
German	Germanic	Medium	Fusional
Italian	Italic	Low	Fusional
Turkish	Turkic	High	Agglutinativ

Implementation

• Using Theano, integrated into NMT toolkit *Nematus* Variables

- Levels of granularity for composition
- Morphological typology (*i.e.* lexical sparseness)

Data

- Training set: TED Talks (150-200K sentences)
- Dev and test: IWSLT (*3K* sentences each)

Hyper-parameters

- GRU: 512 hidden units, Embedding size: 512, Adagrad with lr=0.01
- Vocabulary size: 30,000 units (BPE, LMVR sub-words or character n-grams)

Examples

	n se
Sub-words	ama aslında bu resim tamamen , farklı yerlerin fotoğraf@
ut: BPE Sub-words	but in fact , this picture came up with a completely differ
positional Model	ama aslında bu resim tamamen , <mark>farklı yerlerin fotoğrafl</mark>a
ut: Compositional Model	but in fact , this picture came from collecting pictures of
	but this image is actually entirely composed of photogra

Conclus	Conclusions		
ositional input representations compare favourab- •	Maintaining le		
n sub-word embeddings	syntax		
s suggest eliminating sub-word segmentation •	The compositi		
etely for morphologically-rich input for avoiding	solution for m		

morphological errors

@@ larının birleştir@@ il@@ mesiyle meydana geldi . rent place of photographs.

larının birleştirilmesiyle meydana geldi .

different places.

phs from different locations.

exical boundaries allows to learn better

ional NMT approach provides a generic nachine translation that can generalize over different morphological typology or language families