End-to-End Reinforcement Learning for Automatic Taxonomy Induction

Department of Computer Science, University of Illinois at Urbana-Champaign, USA Department of Computer Science, University of Southern California, CA, USA xiangren@usc.edu {yuningm2, js2, xiaotao2, hanj}@illinois.edu

Yuning Mao, Xiang Ren, Jiaming Shen, Xiaotao Gu, Jiawei Han

Task

- Goal: Automatic Taxonomy Induction
 - Input: 1) a set of training taxonomies
 - 2) related resources (e.g., background text corpora).
 - Output: given vocabulary V_0 , construct a taxonomy T by adding terms from V_0 \bullet
- Hypernymy Detection:
 - Hypernymy pairs (is-a relations) are extracted: (banana, fruit), (panda, mammal), ...
 - A noisy hypernym graph is generated

Experimental Results

Compared methods:

- TAXI [3]: pattern-based method that ranked 1st in the SemEval-2016 Task 13 competition
- HypeNET [4]: state-of-the-art hypernymy detection method
- HypeNET + MST (maximum spanning tree): post-processing of HypeNET to prune the hypernym graph into a tree
- Bansal et al. (2014) [1]: state-of-the-art taxonomy induction method
- SubSeq [2]: state-of-the-art results on the SemEval-2016 Task 13

Hypernymy Organization

- Organize is-a term pairs into a tree-structured hierarchy -> graph pruning
- maximum spanning tree (MST) (Bansal et al., 2014 [1])
- minimum-cost flow (MCF) (Gupta et al., 2017 [2])
- other pruning heuristics (Panchenko et al., 2016 [3])

Methodology

Taxo-RL:

- An end-to-end reinforcement learning (RL) model that combines hypernymy \bullet detection and organization
- Determines which term to select and where to place it on the taxonomy via a policy network
- Global taxonomy structure is captured
- Edges are assessed based on contributions

- Taxo-RL (**RE**, with virtual root embedding), Taxo-RL (**NR**, with new root addition), Taxo-RL (NR) + **FG** (with frequency and generality features)
- Taxo-RL (partial, allows partial taxonomy), Taxo-RL (full, has to use all terms in the vocabulary)
- Performance Study on End-to-End Taxonomy Induction:
 - WordNet (533/144/144 taxonomies for training, validation, and test set, size (10, 50], depth=4, animals, daily necessities, etc.)

Model	P_a	R_a	$F1_a$	P_e	R_e	$F1_e$
TAXI	66.1	13.9	23.0	54.8	18.0	27.1
HypeNET	32.8	26.7	29.4	26.1	17.2	20.7
HypeNET+MST	33.7	41.1	37.0	29.2	29.2	29.2
Taxo-RL (RE)	35.8	47.4	40.8	35.4	35.4	35.4
Taxo-RL (NR)	41.3	49.2	44.9	35.6	35.6	35.6
Bansal et al. (2014)	48.0	55.2	51.4	-	-	-
Taxo-RL (NR) + FG	52.9	58.6	55.6	43.8	43.8	43.8

Testing on Hypernymy Organization:

• SemEval-2016 Task 13 (test set only, hundreds of terms, environment, science domain)

	Model	P_a	R_a	$F1_a$	P_e	R_e	$F1_e$
Env	TAXI (DAG)	50.1	32.7	39.6	33.8	26.8	29.9
	TAXI (tree)	67.5	30.8	42.3	41.1	23.1	29.6
	SubSeq	-	-	-	-	-	22.4
	Taxo-RL (Partial)	51.6	36.4	42.7	37.5	24.2	29.4
	Taxo-RL (Full)	47.2	54.6	50.6	32.3	32.3	32.3
Sci	TAXI (DAG)	61.6	41.7	49.7	38.8	34.8	36.7
	TAXI (tree)	76.8	38.3	51.1	44.8	28.8	35.1
	SubSeq	-	-	-	-	-	39.9
	Taxo-RL (Partial)	84.6	34.4	48.9	56.9	33.0	41.8
	Taxo-RL (Full)	68.3	52.9	59.6	37.9	37.9	37.9

- The state at time t comprises:
 - the current taxonomy T_t (terms & structure) •
 - the remaining vocabulary V_t
- Update deterministically \bullet
- RL Component Actions:
 - 1. select a term x_1 from the remaining vocabulary V_t
 - 2. remove x_1 from V_t
 - 3. attach x_1 as a hyponym of one term x_2 that is already on the current taxonomy T_t
 - $|V_t| = |V_{t-1}| 1, |T_t| = |T_{t-1}| + 1$
 - Action Space: $|V_t| \times |T_t|$
 - Episode Length: $|V_0|$
- RL Component Rewards:
 - $P_a = \frac{|\text{is-a}_{\text{sys}} \wedge \text{is-a}_{\text{gold}}|}{|\text{is-a}_{\text{sys}}|}, R_a = \frac{|\text{is-a}_{\text{sys}} \wedge \text{is-a}_{\text{gold}}|}{|\text{is-a}_{\text{gold}}|}$ **Evaluation Metrics:** Ancestor-F1
 - Edge-F1
 - Reward Shaping: $R_{t} = Edge-F1(t) Edge-F1(t-1)$
- Action (term-pair) Representation
 - Dependency Paths between x, y \bullet
 - W_x: Word Embedding of x
 - W_v: Word Embedding of y
 - F(x, y): Surface (Ends with, Contains, etc.), Frequency (pattern-based co-occur info), and **G**enerality (edge not too general or narrow) Features

- Ablation Study:
 - Multiple sources of information are complementary to each other

Model	P_a	R_a	$F1_a$	$F1_e$
Distributional Info	27.1	24.3	25.6	13.8
Path-based Info	27.8	48.5	33.7	27.4
$\mathbf{D} + \mathbf{P}$	36.6	39.4	37.9	28.3
D + P + Surface Features	41.3	49.2	44.9	35.6
$\mathbf{D} + \mathbf{P} + \mathbf{S} + \mathbf{FG}$	52.9	58.6	55.6	43.8

Case Studies:

- Numbers indicate the orders of term pair selections
- (air filter, filter, 2) -> correct root filter
- (fuel filter, filter, 3), (coffee filter, filter, 4) -> substring inclusion
- -> (colander, strainer, 13), (glass wool, filter, 16) -> path and distributional info

Conclusion and References

- Conclusion:
 - Learns the representations of term pairs by optimizing a holistic tree metric

- Reduces error propagation between two phases
- Achieves new state-of-the-art results

References:

[1] Mohit Bansal, David Burkett, Gerard De Melo, and Dan Klein. ACL 2014. Structured learning for taxonomy induction with belief propagation.

[2] Amit Gupta, Rémi Lebret, Hamza Harkous, and Karl Aberer. CIKM 2017. Taxonomy induction using hypernym subsequences.

[3] Alexander Panchenko, Stefano Faralli, Eugen Ruppert, Steffen Remus, Hubert Naets, Cedrick Fairon, Simone Paolo Ponzetto, and Chris Biemann. SemEval 2016. Taxi: a taxonomy induction method based on lexico-syntactic patterns, substrings and focused crawling.

[4] Vered Shwartz, Yoav Goldberg, and Ido Dagan. ACL 2016. Improving hypernymy detection with an integrated path-based and distributional method

