# Neural Natural Language Inference Models Enhanced with External Knowledge

### Contributions

- $\star$  Enrich the state-of-the-art neural natural language inference models with **external** knowledge.
- $\star$  The proposed models improve neural NLI models to achieve the state-of-the-art performance on the SNLI and MultiNLI datasets.

## Source code available!!!

https://github.com/lukecq1231/kim



Our implementation uses python and is based on the **Theano** library.

## An example

| $\mathbf{P}/\mathbf{G}$ | Sentences                                           |
|-------------------------|-----------------------------------------------------|
| e/c                     | p: An African person standing in a <b>wheat</b>     |
|                         | field.                                              |
|                         | h: A person standing in a <b>corn</b> field.        |
| e/c                     | p: Little girl is flipping an <b>omelet</b> in the  |
|                         | kitchen.                                            |
|                         | h: A young girl cooks <b>pancakes</b> .             |
| c/e                     | p: A middle eastern <b>marketplace</b> .            |
| ,<br>                   | h: A middle easten <b>store</b> .                   |
| c/e                     | p: Two boys are swimming with boogie                |
|                         | boards.                                             |
|                         | h: Two boys are swimming with their <b>floats</b> . |

## Analysis



**Qian Chen**<sup>1</sup>, Xiaodan Zhu<sup>2</sup>, Zhen-Hua Ling<sup>1</sup>, Diana Inkpen<sup>3</sup>, Si Wei<sup>4</sup> <sup>1</sup>University of Science and Technology of China <sup>2</sup>Queen's University

## Our model — KIM (Knowledge-based Inference Model)



## **Detail of KIM**

| <b>1. External Knowledge</b><br>$r_{ij} = [Syn, Ant, Hyper, Hypon, Co-hypon]$                                                                                |     | 4. Lo<br>Know                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------|
| 2. Input Encoding<br>Premise: $\boldsymbol{a} = (a_1, \dots, a_m)$<br>Hypothesis: $\boldsymbol{b} = (b_1, \dots, b_n)$                                       |     | $oldsymbol{a}_i^m$ =                          |
| $\boldsymbol{a}_{i}^{s}=\mathrm{BiLSTM}(\mathbf{E}(\boldsymbol{a}),i),$                                                                                      | (1) | $oldsymbol{b}_j^m$ =                          |
| $\boldsymbol{b}_j^s = 	ext{BiLSTM}(\mathbf{E}(\boldsymbol{b}), j)$ .                                                                                         | (2) |                                               |
| 3. Knowledge-Enriched Co-Attention                                                                                                                           |     | Throu<br>relation<br>word-le                  |
| $e_{ij} = (\boldsymbol{a}_i^s)^{\mathrm{T}} \boldsymbol{b}_j^s + F(\boldsymbol{r}_{ij}) .$                                                                   | (3) | 5. Kr<br>tion                                 |
| $\mathbbm{1}(m{r}_{ij}) = egin{cases} 1 & 	ext{if } m{r}_{ij} 	ext{ is not a zero vector }; \ 0 & 	ext{if } m{r}_{ij} 	ext{ is a zero vector }. \end{cases}$ | (4) |                                               |
| Word pairs with semantic relationship are proba aligned together.                                                                                            | bly | Use we<br>to obta                             |
| $\exp(e_{ij})$ $\sum_{n=1}^{n}$                                                                                                                              |     | $oldsymbol{a}^{\scriptscriptstyle\mathrm{W}}$ |

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{n} \exp(e_{ik})}, \ \boldsymbol{a}_i^c = \sum_{j=1}^{n} \alpha_{ij} \boldsymbol{b}_j^s, \quad (5)$$

$$m \qquad b^w$$

$$\beta_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{m} \exp(e_{kj})}, \ \boldsymbol{b}_j^c = \sum_{i=1}^{m} \beta_{ij} \boldsymbol{a}_i^s, \quad (6)$$

<sup>3</sup>University of Ottawa

<sup>4</sup>iFLYTEK Research

ocal Inference Collection with External ledge

$$= G([\boldsymbol{a}_{i}^{s}; \boldsymbol{a}_{i}^{c}; \boldsymbol{a}_{i}^{s} - \boldsymbol{a}_{i}^{c}; \boldsymbol{a}_{i}^{s} \circ \boldsymbol{a}_{i}^{c}; \sum_{j=1}^{n} \alpha_{ij} \boldsymbol{r}_{ij}]), \quad (7)$$

$$= G([\boldsymbol{b}_{j}^{s}, \boldsymbol{b}_{j}^{c}; \boldsymbol{b}_{j}^{s} - \boldsymbol{b}_{j}^{c}; \boldsymbol{b}_{j}^{s} \circ \boldsymbol{b}_{j}^{c}; \sum_{i=1}^{m} \beta_{ij} \boldsymbol{r}_{ji}]), \quad (8)$$

ugh comparing  $a_i^s$  and  $a_i^c$ , in addition to their on from **external knowledge**, we can obtain level inference information for each word.

nowledge-Enhanced Inference Composi-

$$\boldsymbol{a}_i^v = \operatorname{BiLSTM}(\boldsymbol{a}^m, i),$$
 (9)

$$\boldsymbol{b}_{j}^{v} = \operatorname{BiLSTM}(\boldsymbol{b}^{m}, j)$$
. (10)

reighted pooling based on external knowledge ain a fixed-length vectors.

$$= \sum_{i=1}^{m} \frac{\exp(H(\sum_{j=1}^{n} \alpha_{ij} \boldsymbol{r}_{ij}))}{\sum_{i=1}^{m} \exp(H(\sum_{j=1}^{n} \alpha_{ij} \boldsymbol{r}_{ij}))} \boldsymbol{a}_{i}^{v}, \quad (11)$$

$$= \sum_{j=1}^{n} \frac{\exp(H(\sum_{i=1}^{m} \beta_{ij} \boldsymbol{r}_{ji}))}{\sum_{j=1}^{n} \exp(H(\sum_{i=1}^{m} \beta_{ij} \boldsymbol{r}_{ji}))} \boldsymbol{b}_{j}^{v} .$$
(12)

### Results

| Model                                                                      | Test         |
|----------------------------------------------------------------------------|--------------|
| LSTM Att. [Rocktäschel et al., 2015]                                       | 83.5         |
| Match-LSTM [Wang and Jiang, 2016]<br>Decomposable Att [Parikh et al. 2016] | 86.1<br>86.8 |
| Difference $[1, 2010]$<br>DIIN [Gong et al., 2017]                         | 88.0         |
| CAFE [Tay et al., 2018]                                                    | 88.5         |
| ESIM [Chen et al., $2017a$ ]                                               | 88.0         |
| KIM (This paper)                                                           | 88.6         |

Table 2: Accuracies of models on the SNLI and [Glockner et al., 2018] test set. \* indicates the results taken from [Glockner et al., 2018].

| Model                      | SNLI | $\mathbf{Glockner's}(\Delta)$ |
|----------------------------|------|-------------------------------|
| $[Parikh et al., 2016]^*$  | 84.7 | 51.9(-32.8)                   |
| [Nie and Bansal, $2017$ ]* | 86.0 | 62.2(-23.8)                   |
| ESIM *                     | 87.9 | 65.6(-22.3)                   |
| KIM (This paper)           | 88.6 | <b>83.5</b> ( -5.1)           |
|                            |      |                               |

| Model                             | In       | Cross         |
|-----------------------------------|----------|---------------|
| BiLSTM [Williams et al., 2017]    | 66.9     | 66.9          |
| Gated BiLSTM [Chen et al., 2017b] | 73.5     | 73.6          |
| DIIN * [Gong et al., $2017$ ]     | 77.8     | 78.8          |
| CAFE [Tay et al., $2018$ ]        | 78.7     | 77.9          |
| ESIM [Chen et al., 2017a]         | 76.8     | 75.8          |
| KIM (This paper)                  | 77.2     | <b>76.4</b>   |
|                                   |          |               |
| On SNLI, Knowledge-based Ir       | nference | e Model       |
| (KIM), which enriches ESIM        | with     | external      |
| la carlada cabaina an accorración | -t 00 C  | $\mathcal{T}$ |

| _ |  |
|---|--|
|   |  |
|   |  |

• **SNLI:** Training: 550k sentence pairs, held-out: 10k, testing: 10k • Clockner's Test set: testing: 8k • MultiNLI: Training: 400k sentence pairs, heldout: 10k/10k, testing: 10k/10k

 Table 1: Accuracies of models on SNLI.

Table 3: Accuracies of models on MultiNLI. \* indicates models using extra SNLI training set.

knowledge, obtains an accuracy of 88.6%.

 $\bigstar$  On Glockner's test set, KIM achieves 83.5%(with only a 5.1% drop ), which demonstrates its better generalizability.

 $\bigstar$  On MultiNLI, KIM achieve significant gains to 77.2% and 76.4% respectively.