
AMR Dependency Parsing with a Typed Semantic Algebra
Supplementary Materials

Jonas Groschwitz∗† Matthias Lindemann∗ Meaghan Fowlie∗

Mark Johnson† Alexander Koller∗
∗ Saarland University, Saarbrücken, Germany † Macquarie University, Sydney, Australia

jonasg|mlinde|mfowlie|koller@coli.uni-saarland.de
mark.johnson@mq.edu.au

A NP-completeness of the decoding
problem

We prove NP-completeness for the well-typed de-
coding problem by reduction from HAMILTONIAN-
PATH.

Let G = (V,E) be a directed graph with nodes
V = {1, . . . , n} and edges E ⊆ V × V . A Hamil-
tonian path in G is a sequence (v1, . . . , vn) that
contains each node of V exactly once, such that
(vi, vi+1) ∈ E for all 1 ≤ i ≤ n − 1. We assume
w.l.o.g. that vn = n. Deciding whether G has a
Hamiltonian path is NP-complete.

Given G, we construct an instance of the de-
coding problem for the sentence w = 1 . . . n as
follows. We assume that the first graph fragments
shown in Fig. 1a (with node label “i”) is the only
graph fragment the supertagger allows for 1, . . . ,
n − 1, and the second one (with node label “f”)
is the only graph fragment allowed for n. We let
ω(i→ k) = 1 if (i, k) ∈ E, and zero otherwise.

Under this construction, every well-typed AM
dependency tree for w corresponds to a linear se-
quence of nodes connected by edges with label
APPs (see Fig. 1c for an example) More specifi-
cally, n is a leaf, and every node except for n has
precisely one outgoing APPs edge; this is enforced
by the well-typedness. Because of the edge scores,
the score of such a dependency tree is n− 1 iff it
only uses edges that also exist in G; otherwise the
score is less than n− 1. Therefore, we can decide
whether G has a Hamiltonian path by running the
decoder, i.e. computing the highest-scoring well-
typed AM dependency tree t for w, and checking
whether the score of t is n− 1.

B Neural Network Details

We implemented the supertagger (Section 5.1) and
the local dependency model (Section 5.3) in Py-
Torch, and used the original DyNet implementation

i

s

AR
G
0

1

2

3

1

2

APP
s

3

APP s

(a) (b) (c)f

Figure 1: (a) The two graph fragments required for
the NP-completeness proof. (b) An example graph
and (c) the AM dependency tree corresponding to
its Hamiltonian path.

of (Kiperwasser and Goldberg, 2016) (short K&G)
for the K&G model. Further details are:

1. As pre-trained embeddings, we use GloVE
(Pennington et al., 2014). The vectors we
use have 200 dimensions and are trained on
Wikipedia and Gigaword. We add randomly
initialized vectors for the name, date and
number tokens and for the unknown word
token (if no GloVE vector exists). We keep
these embeddings fixed and do not train them.

2. For the learned word embeddings, we fol-
low K&G in all our models in using a word
dropout of α = 0.25. That is, during training,
for a word that occurs k times in the training
data, with probability α

k+α we instead use the
word embedding for the unknown word token
instead of wi.

3. The character-based encodings ci for the su-
pertagger are generated by a single layer
LSTM with 100 hidden dimensions, reading
the word left to right. If a word (or sequence
of words) is replaced by e.g. a name token
during pre-processing, the character-based en-
coding reads the original string instead (this
helps to classify names correctly as country,
person etc.).

4. To prevent overfitting, we add dropout of 0.5

Optimizer Adam
Learning Rate 0.004
Epochs 37
Pre-trained word embeddings glove.6B
Pre-trained word emb. dimension 200
Learned word emb. dimension 100
POS embedding dimension 32
Character encoding dimension 100
α (word dropout) 0.25
Bi-LSTM layers 2 (stacked)
Hidden dimensions in each LSTM 256
Hidden units in MLPs 256
Internal dropout of LSTMs, MLPs 0.5
Input vector dropout 0.8

Table 1: Hyperparameters used for training the
supertagger (Section 5.1)

Optimizer Adam
Learning rate default
Epochs 16
Word embedding dimension 100
POS embedding dimension 20
Type embedding dimension 32
α (word dropout) 0.25
Bi-LSTM layers 2 (stacked)
Hidden dimensions in each LSTM 128
δ 0.2
Hidden units in MLPs 100

Table 2: Hyperparameters used for training K&Gś
model (Section 5.2)

in the LSTM layers of all the models except
for the K&G model which we keep as im-
plemented by the authors. We also add 0.5
dropout to the MLPs in the supertagger and
local dependency model.

5. For the K&G model with the fixed-tree de-
coder, we perform early stopping computing
the Smatch score on the development set with
2 best supertags after each epoch.

6. Hyperparameters for the different neural mod-
els are detailed in Tables 1, 2 and 3. We did
not observe any improvements when increas-
ing the number of LSTM dimensions of the
K&G model.

Optimizer Adam
Learning Rate 0.004
Epochs 35
Pre-trained word embeddings glove.6B
Pre-trained word emb. dimension 200
POS embedding dimension 25
Bi-LSTM layers 2 (stacked)
Hidden dimensions in each LSTM 256
Hidden units in MLPs 256
Internal dropout of LSTMs, MLPs 0.5
Input vector dropout 0.8

Table 3: Hyperparameters used for training the
simplified dependency model (Section 5.3)

C Decoding Details

The goal item of the decoders is one with empty
type that covers the complete sentence. In prac-
tice, the projective decoder always found such a
derivation. However, in in a few cases, this can-
not be achieved by the fixed-tree decoder with the
given supertags. Thus, we take instead the item
which minimizes the number of open sources in
the resulting graph.

When the fixed-tree decoder takes longer than
20 minutes using k best supertags, it is re-run with
k − 1 best supertags. If k = 0, a dummy graph is
used instead. Typically, the limit of 20 minutes is
exceeded one or more times by the same sentence
of the test set.

With the projective decoder, in most runs, 1 or
2 sentences took too long to parse and we used a
dummy graph instead.

We trained the supertagger and all models 4
times with different initializations. For evaluation,
we paired each edge model with a supertag model
such that every run used a different edge model
and different supertags. The reported confidence
intervals are 95% confidence intervals according to
the t-distribution.

D Pre- and postprocessing Details

D.1 Aligner

We use a heuristic process to generate alignments
satisfying the conditions above. Its core principles
are similar to the JAMR aligner of (Flanigan et al.,
2014). There are two types of actions:

Action 1: Align a word to a node (based on the
word and the node label, using lexical similarity,

handwritten rules1 and WordNet neighbourhood;
we align some name and date patterns directly).
That node becomes the lexical node of the align-
ment.

Action 2: Extend an existing alignment to an
adjacent node, such as from “write” to “person”
in the example graph in the main paper. Such an
extension is chosen on a heuristic based on

1. the direction and label of the edge along which
the alignment is split,

2. the labels of both the node we spread from,
and the node we spread to, and

3. the word of the alignment.

We disallow this action if the resulting alignment
would violate the single-root constraint of Section
4.2 in the main paper.

Each action has a basic heuristic score, which
we increase if a nearby node is already aligned
to a nearby word, and decrease if other potential
operations conflict with this one. We remove We it-
eratively execute the highest scoring action until all
heuristic options are exhausted or all nodes aligned.
We then align remaining unaligned nodes to words
near adjacent alignments.

D.2 Postprocessing

Having obtained an AM dependency tree, we can
recover an AM term and evaluate it. During post-
processing we have to re-lexicalize the resulting
graph according to the input string. For relatively
frequent words in the training data (occurring at
least 10 times), we take the supertagger’s predic-
tion for the label. For rarer words, the neural label
prediction accuracy drops, and we simply take the
node label observed most often with the word in
the training data. For unseen words, if the lexi-
calized node has outgoing ARGx edges, we first
try to find a verb lemma for the word in WordNet
(Miller, 1995) (we use version 3.0). If that fails,
we try, again in WordNet, to find the closest verb
derivationally related to any lemma of the word. If
that also fails, we take the word literally. In any
case, we add “-01” to the label. If the lexicalized
node does not have an outgoing ARGx edge, we
try fo find a noun lemma for the word in Wordnet,
and otherwise take the word literally.

1E.g. the node label “have-condition-91” can be aligned to
“if” and “otherwise”.

For names, we again simply look up name nodes
and wiki entries observed for the word in the train-
ing data, and for unseen names use the literal tokens
as the name and no wiki entry. We recover dates
and numbers straightforwardly.

References
Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,

Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract meaning
representation. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers).

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and Accurate Dependency Parsing Using Bidi-
rectional LSTM Feature Representations. Transac-
tions of the Association for Computational Linguis-
tics 4:313–327.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39–
41.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

