

TDNN: A Two-stage Deep Neural Network for Prompt-independent Automated Essay Scoring

Cancan Jin1Ben He^{1,3}Kai Hui2Le Sun^{3,4}¹School of Computer & Control Engineering,
University of Chinese Academy of Sciences, Beijing, China
² SAP SE, Berlin, Germany³ Institute of Software, Chinese Academy of Sciences, Beijing, China
⁴ Beijing Advanced Innovation Center for Language Resources, Beijing, China
jincancan15@mails.ucas.ac.cn, benhe@ucas.ac.cn
kai.hui@sap.com, sunle@iscas.ac.cn

Outline

- Background
- Method
- Experiments
- Conclusions

What is Automated Essay Scoring (AES)?

- Computer produces summative assessment for evaluation
- Aim: reduce human workload
- AES has been put into practical use by ETS from 1999

Prompt-specific and -Independent AES

- Most existing AES approaches are prompt-specific
 - Require human labels for each prompt to train
 - Can achieve satisfying human-machine agreement
 - Quadradic weighted kappa (QWK) > 0.75 [Taghipour & Ng, EMNLP 2016]
 - Inter-human agreement: QWK=0.754
- Prompt-independent AES remains a challenge
 - Only non-target human labels are available

Off-topic: essays written for source prompts are mostly irrelevant

Outline

- Background
- Method
- Experiments
- Conclusions

TDNN: A Two-stage Deep Neural Network for Promptindependent AES

- Based on the idea of transductive transfer learning
- Learn on target essays
- Utilize the content of target essays to rate

The Two-stage Architecture

• Prompt-independent stage: train a shallow model to create pseudo labels on the target prompt

The Two-stage Architecture

• Prompt-dependent stage: learn an end-to-end model to predict essay ratings for the target prompts

- Train a robust prompt-independent AES model
 - Using Non-target prompts
 - Learning algorithm: RankSVM for AES
 - Pre-defined prompt-independent features
- Select confident essays written for the target prompt

- Train a robust prompt-independent AES model
 - Using Non-target prompts
 - Learning algorithm: RankSVM
 - Pre-defined prompt-independent features
- Select confident essays written for the target prompt

Predicted Scores		
	0	10

- Train a robust prompt-independent AES model
 - Using Non-target prompts
 - Learning algorithm: RankSVM
 - Pre-defined prompt-independent features
- Select confident essays written for the target prompt

Predicted ratings in [0, 4] as negative examples

- Train a robust prompt-independent AES model
 - Using Non-target prompts
 - Learning algorithm: RankSVM
 - Pre-defined prompt-independent features
- Select confident essays written for the target prompt

Predicted ratings in [8, 10] as positive examples

- Train a robust prompt-independent AES model
 - Using Non-target prompts
 - Learning algorithm: RankSVM
 - Pre-defined prompt-independent features
- Select confident essays written for the target prompt

- Train a robust prompt-independent AES model
 - Using Non-target prompts
 - Learning algorithm: RankSVM
 - Pre-defined prompt-independent features
- Select confident essays written for the target prompt
 - Common sense: ≥ 8 is good, <5 is bad
 - Enlarge sample size

- Train a hybrid deep model for a promptdependent assessment
- An end-to-end neural network with three parts of inputs:
 - Word semantic embeddings
 - Part-of-speech (POS) taggings
 - Syntactic taggings

Multi-layer structure: Words – (phrases) - Sentences – Essay

embeddings

Multi-layer structure: Words – (phrases) - Sentences – Essay

Model Training

• Training loss: MSE on 0/1 pseudo labels

Validation metric: Kappa on 30% non-target essays
Select the model that can best rate

Outline

- Background
- Method
- Experiments
- Conclusions

Dataset & Metrics

- We use the standard ASAP corpus
 - 8 prompts with >10K essays in total
- Prompt-independent AES: 7 prompts are used for training, 1 for testing
- Report on common human-machine agreement metrics
 - Pearson's correlation coefficient (PCC)
 - Spearman's correlation coefficient (SCC)
 - Quadratic weighted Kappa (QWK)

Baselines

- RankSVM based on prompt-independent handcrafted features
 - Also used in the prompt-independent stage in TDNN
- 2L-LSTM [Alikaniotis et al., ACL 2016]
 - Two LSTM layer + linear layer
- **CNN-LSTM** [Taghipour & Ng, EMNLP 2016]
 - CNN + LSTM + linear layer
- CNN-LSTM-ATT [Dong et al., CoNLL 2017]
 - CNN-LSTM + attention

RankSVM is the most robust baseline

QWK of the baselines on the 8 prompts

- High variance of DNN models' performance on all 8 prompts
 - Possibly caused by learning on non-target prompts
- RankSVM appears to be the most stable baseline
 - Justifies the use of RankSVM in the first stage of TDNN

Comparison to the best baseline

Performance of TDNN variants

- TDNN outperforms the best baseline on 7 out of 8 prompts
- Performance improvements gained by learning on the target prompt

Average performance on 8 prompts

	Method	QWK	PCC	SCC
Baselines	RankSVM	.5462	.6072	.5976
	2L-LSTM	.4687	.6548	.6214
	CNN-LSTM	.5362	.6569	.6139
	CNN-LSTM-ATT	.5057	.6535	.6368
TDNN	TDNN(Sem)	.5875	.6779	.6795
	TDNN(Sem+POS)	.6582	.7103	.7130
	TDNN(Sem+Synt)	.6856	.7244	.7365
	TDNN(POS+Synt)	.6784	.7189	.7322
	TDNN(ALL)	.6682	.7176	.7258

Average performance on 8 prompts

	Method	QWK	PCC	SCC
Baselines	RankSVM	.5462	.6072	.5976
	2L-LSTM	.4687	.6548	.6214
	CNN-LSTM	.5362	.6569	.6139
	CNN-LSTM-ATT	.5057	.6535	.6368
TDNN	TDNN(Sem)	.5875	.6779	.6795
	TDNN(Sem+POS)	.6582	.7103	.7130
	TDNN(Sem+Synt)	.6856	.7244	.7365
	TDNN(POS+Synt)	.6784	.7189	.7322
	TDNN(ALL)	.6682	.7176	.7258

Average performance on 8 prompts

	Method	QWK	PCC	SCC
Baselines	RankSVM	.5462	.6072	.5976
	2L-LSTM	.4687	.6548	.6214
	CNN-LSTM	.5362	.6569	.6139
	CNN-LSTM-ATT	.5057	.6535	.6368
TDNN	TDNN(Sem)	.5875	.6779	.6795
	TDNN(Sem+POS)	.6582	.7103	.7130
	TDNN(Sem+Synt)	.6856	.7244	.7365
	TDNN(POS+Synt)	.6784	.7189	.7322
	TDNN(ALL)	.6682	.7176	.7258

Sanity Check: Relative Precision

How the quality of pseudo examples affects the performance of TDNN?

- The sanctity of the selected essays, namely, the number of positive (negative) essays that are better (worse) than all negative (positive) essays.
- Such relative precision is at least 80% and mostly beyond 90% on different prompts
- TDNN can at least learn from correct 0/1 labels

Conclusions

- It is beneficial to learn an AES model on the target prompt
- Syntactic features are useful addition to the widely used Word2Vec embeddings
- Sanity check: small overlap between pos/neg examples
- Prompt-independent AES remains an open problem
 - ETS wants Kappa>0.70
 - TDNN can achieve 0.68 at best

