Identifying Transferable Information Across Domains for Cross-domain Sentiment Classification

Authors: Raksha Sharma, Pushpak Bhattacharyya, Sandipan Dandapat and Himanshu Sharad Bhatt

Affiliation: IIT Bombay & Xerox Research Center of India

Motivation

- Getting manually labeled data in each domain for sentiment analysis is always an expensive and a time consuming task, cross-domain sentiment analysis provides a solution.
- However, polarity orientation (positive or negative) and the significance of a word to express an opinion often differ from one domain to another.

Changing Significance: "Entertaining, boring, one-note, etc." are significant for classification in the movie domain.

Changing Polarity: "Unpredictable plot of a movie" //Positive sentiment

"Unpredictable behaviour of a machine" //Negative sentiment

Problem Definition

- Significant Consistent Polarity (SCP) words represent the transferable (usable) information across domains.

- We present an approach based on χ^2 test and cosine-similarity between context vector of words to identify polarity preserving significant words across domains.

- Furthermore, we show that a weighted ensemble of the classifiers enhances the cross-domain classification performance.

Technique: Find SCP

Significant Consistent Polarity (SCP): $S \cap T$

//Transferable information from the source (S) to the target (T) for cross-domain SA.

S: Significant words with their polarity orientation in the labeled source domain: χ^2 test

 H_0 : 'unpredictable' has equal distribution in the positive and negative corpora H_a : 'unpredictable' has significantly different count in either positive or negative corpus If X^2 score is greater than 3.85

 \Rightarrow *p*-value ≤ 0.05

=> Probability of the observed value given null hypothesis is true is less than 0.05

=> Reject the Null hypothesis

=> 'unpredictable' has occurred significantly more often in one of the class with a χ^2 score of 4.5.

Technique: Find SCP (2)

T: Significant words with their polarity orientation in the unlabeled target domain:

Significance: NormalizedCount_t(Significant_s(w)) > $\theta \Rightarrow$ Significant_t(w)

Polarity: $If(cosine(conVec(w), conVec(pos-pivot))) > cosine(conVec(w), conVec(neg-pivot))) \Rightarrow Positive$

 $If(cosine(conVec(w), conVec(pos-pivot)) < cosine(conVec(w), conVec(neg-pivot))) \Rightarrow Negative$

- Note: We construct a 100 dimensional vector for each candidate word from the unlabeled target domain data. *Significant Consistent Polarity (SCP):* $S \cap T$
 - //Transferable information from the source to the target for cross-domain SA.

Example: Inferred polarity orientation in the Target Domain

Word	Great (Pos-pivot)	Bad (Neg-pivot)	Polarity	
Horrible	0.25	0.31 Negative		
Awful	0.08	0.31	Negative	
Terrible	0.05	0.21	Negative	
Fantastic	0.23	0.04	Positive	
Amazing	0.24	0.04	Positive	
Wonderful	0.25	0.01	Positive	

Cosine-similarity score with the Pos-pivot (great) and Neg-pivot (bad), and inferred polarity orientation of words in the movie domain.

F-score for SCP words identification task

E : Electronics

B : Books

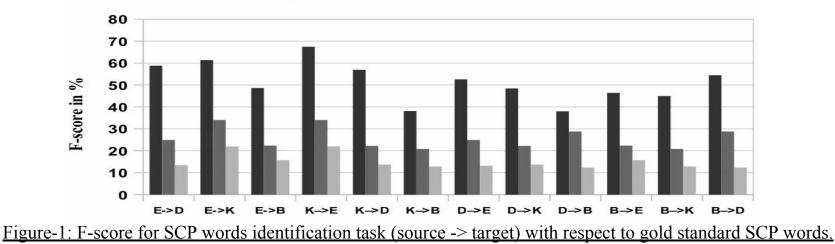
D:DVD

K : Kitchen

- Available at:
- http://www.cs.jhu.edu/~mdredze/datasets/sentiment/ind ex2 html

Gold standard SCP words: Application of χ^2 test in both the domains considering target domain is also labeled gives us gold standard SCP words from the corpus. No manual annotation.

SCL: Structured Correspondence Learning (Bhatt et al., 2015)



Our Approach SCL Common Unigram

Domain Adaptation Algorithm

Output: Sentiment Classifier in the Target Domain.

Step-1 : SCP = $sigPol(D_s^l) \cap sigPol(D_t^u)$ Step-2 : C_s = Train-SVM (D_s^l) , where f = SCP Step-3 : Predict Label: $C_s(D_t^u) \rightarrow D_t^l$ Step-4 : Select: $R_t^n \mid \forall r_t^i \in D_t^u$, $C_s(r_t^i) > \phi$, where $i \in \{1, 2, ..., k\}$ and $n \le k$ Step-5 : C_t = Train-SVM (R_t^n) , where $f = \{unigrams(R_t^n)\}$ Step-6 : WSM = $(C_s * W_s + C_t * W_t)/(W_s + W_t)$

Step-7 : Sentiment Classifier in the Target Domain = WSM

 $C_s(\text{exampleDoc}) = -0.07 \text{ (wrong prediction, negative)}$ $C_t(\text{exampleDoc}) = 0.33 \text{ (correct prediction, positive)}$

$$W_s = 0.765$$
, $W_t = 0.712$

$$WSM(exampleDoc) = \frac{(-0.07*0.765+0.33*0.712)}{(0.765+0.712)} = 0.12$$

Cross-domain Results

System Name: Transferred Info System-1: Common-unigrams System-2: SCL (Bhatt et al, 2015) System-3: SCP System-4: System-1 + iterations System-5: System-2 + iterations System-6: System-3 + iterations

❑ We obtained a strong positive correlation (r) of 0.78 between F-score (figure-1) and cross-domain accuracy (system-3).

	Sys1	Sys2	Sys3	Sys4	Sys5	Sys6
D->B	62	64.2	67	66	76.5	78.5
E->B	63	58.9	68.3	67	75.6	76.3
K->B	67	68.75	67.85	69	71.2	74
B->D	76	81	80.5	77	81.5	81.5
E->D	68	71	77.5	71.5	74	80.4
K->D	69	69	74	71	75.2	77
B->E	68	66	73	69	79	81.2
K->E	76	75.75	80	78	81	82
K->E	76	75.75	80	78	81	82
B->K	66	67.5	72	69	79.2	80.5
D->K	65.76	67	71	66	80	81
E->K	74.25	75	85.75	76	84	85.75

9

Conclusion

- Significant Consistent Polarity (SCP) words shows a strong positive correlation of 0.78 with the sentiment classification accuracy achieved in the unlabeled target domain.

Essentially, a set of less erroneous transferable features lead to a more accurate classification system in the unlabeled target domain.