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1 DPCCA Variant A

As stated in §4 of the paper, Algorithm 1 provides
the pseudo-code of the optimization algorithm for
DPCCA Variant A (illustrated by Figure 1). As
discussed in the paper, DPCCA Variant A may be
seen as a special case of Variant B: Z is kept fixed
with Variant A.

Figure 1: DPCCA (Variant A). X and Y (English
and German image descriptions) are fed through
two identical deep feed-forward neural networks
followed by a final linear layer, while Z (an image)
is kept fixed. Finally, the final nodes of the net-
works F (X) and G(Y ) are maximally correlated
conditioned on Z.

2 Baselines

In this section we elaborate on the baselines we
compared our models against. For all baselines,
we employ the same hyperparameter tuning proto-
col as for our model (see §3 of this supplementary
material), and report test set results with the con-
figuration that performed best on the validation
set. Finally, we use the same network architectures
across all DCCA variants (see below).

CCA Canonical Correlation Analysis (Hotelling,
1936). The objective of this model is to find a lin-
ear transformation of two aligned sets of variables,
(xi,yi)

N
1=1, such that the correlation between the

transformed variables is maximized. We use the

implementation of this algorithm in the scikit-learn
package http://www.scikit-learn.org.

DCCA The Deep CCA model (Andrew et al.,
2013) is an extension of CCA to a deep feed-
forward neural network. We use the imple-
mentation of the algorithm as suggested in
(Wang et al., 2015a), which uses stochastic op-
timization with large minibatches. Code is
available at http://ttic.uchicago.edu/
˜wwang5/dccae.html.

DCCA NOI This is the same Deep CCA model
as in the original DCCA, but the optimization is
based on Nonlinear Orthogonal Iterations (NOI)
(Wang et al., 2015b), another form of stochastic
optimization. The covariance estimates are esti-
mated using a moving average technique and hence
the algorithm is not restricted to run over large
minibatches. We implemented this algorithm and
submit it as part of our code.

DCCA SDL Deep CCA with a Stochastic Decor-
relation Loss (SDL) (Chang et al., 2017). Instead
of enforcing the whitening constraints explicitly, an
L1 objective term is placed over the off-diagonal
elements of the covariance estimates. The code
for this model is not publicly available, we imple-
mented it as part of our research.

DCCAE The Deep CCA Autoencoder model
(Wang et al., 2015a) extends the DCCA model
by adding an autoencoder component which aims
to reconstruct the model’s inputs. The DCCAE
objective provides a trade-off between maximiz-
ing the correlation between the two sets of vari-
ables on the one hand, and finding informative
features for the reconstruction of these variables
on the other hand. We use the implementation
from the authors of the original paper. Code is
available at http://ttic.uchicago.edu/
˜wwang5/dccae.html.
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Algorithm 1 The non-linear orthogonal iterations (NOI)
algorithm for DPCCA Variant A

Input: Data matrices X ∈ RDx×N , Y ∈ RDy×N ,
Z ∈ RDz×N , time constant ρ, learning rate η.
initialization: Initialize weights (WF ,VG).
Randomly choose a minibatch (Xb0 ,Yb0 ,Zb0).
Initialize covariances:
Σ̂FF ← N−1

|b0| F (Xb0)F (Xb0)T

Σ̂GG ← N−1
|b0| G(Yb0)G(Yb0)T

Σ̂ZZ ← N−1
|b0| Zb0Z

T
b0

Σ̂FZ ← N−1
|b0| F (Xb0)ZT

b0

Σ̂GZ ← N−1
|b0| G(Yb0)ZT

b0

for t = 1, 2, . . . , n do
Randomly choose a minibatch (Xbt ,Ybt ,Zbt).
Update covariances:
Σ̂FF ← ρΣ̂FF + (1− ρ)N−1|bt| F (Xbt)F (Xbt)

T

Σ̂GG ← ρΣ̂GG + (1− ρ)N−1|bt| G(Ybt)G(Ybt)
T

Σ̂ZZ ← ρΣ̂ZZ + (1− ρ)N−1|bt| ZbtZ
T
bt

Σ̂FZ ← ρΣ̂FZ + (1− ρ)N−1|bt| F (Xbt)Z
T
bt

Σ̂GZ ← ρΣ̂GZ + (1− ρ)N−1|bt| G(Ybt)Z
T
bt

Update conditional variables:
F |Z ← F (Xbt)− Σ̂FZΣ̂−1

ZZZbt

G|Z ← G(Ybt)− Σ̂GZΣ̂−1
ZZZbt

Σ̂FF |Z ← Σ̂FF − Σ̂FZΣ̂−1
ZZΣ̂T

FZ

Σ̂GG|Z ← Σ̂GG − Σ̂GZΣ̂−1
ZZΣ̂T

GZ

Fix G̃|Z = Σ̂
−1

2

GG|ZG|Z, and compute ∇WF

with respect to:
min
WF

1
|bt|‖F |Z − G̃|Z‖2F

Update parameters:
WF ←WF − η∇WF

Fix F̃ |Z = Σ̂
−1

2

FF |ZF |Z, and compute ∇VG

with respect to:
min
VG

1
|bt|‖G|Z − F̃ |Z‖2F

Update parameters:
VG ← VG − η∇VG

end for
Output: (WF ,VG)

GCCA The Generalized CCA model (Horst,
1961; Rastogi et al., 2015) extends the CCA model
by maximizing the sum of canonical correlations
of more than one pair of variable sets. Like CCA,

the transformations are also linear. In contrast to
PCCA, GCCA treats all variable sets in its input
as equal and aims to maximize the correlation be-
tween any pair of variable sets. We use the imple-
mentation of Funaki and Nakayama (2015) in order
to learn a shared space of two linguistic representa-
tions and their corresponding images. Code is avail-
able at http://github.com/rupy/GCCA.

NCCA Nonparametric CCA (Michaeli et al.,
2016). A non-parametric variant of CCA. The
model obtain optimal nonparametric projections
from the SVD of a kernel defined via the point-
wise mutual information between two sets of vari-
ables. We use the authors’ implementation. Code
is available at http://webee.technion.ac.
il/people/tomermic/.

PPCCA The Probabilistic Partial CCA model
is a probabilistic variant of PCCA. Mukuta and
Harada (2014) solve the objective with a Bayesian
estimation technique. We use the authors’ im-
plementation. Code is available at http://
github.com/mil-tokyo/bayes-pcca.

BCN The main modeling assumption of the
Bridge Correlational Network (BCN) (Rajendran
et al., 2016) is that there exists a pivot view which
shares parallel data with the other, non-pivot views,
that in turn do not share parallel data with each
other. In (Rajendran et al., 2016) the pivot view
consists of English sentences, while the non-pivot
views are sentences in other languages. We use
the authors’ implementation in our experiments.
Unlike in the original paper we experimented with
either English sentences or with images as the pivot
view. The BCN code is available at http://
sarathchandar.in/bridge-corrnet.

IMG PIVOT The Image Pivoting model Gella
et al. (2017). The model aims to learn representa-
tions of images and their descriptions in multiple
languages. The loss function encourages images
and their descriptions (modeled by LSTMs), as
well as descriptions of the same image in different
languages, to be closer to each other compared to
images and sentences that do not describe them and
to sentences in different language that do not de-
scribe the same image. The authors were very kind
to provide us with the visual and textual embed-
dings outputted by their strongest model variants:
PARALLEL-ASYM and PARALLEL-SYM (they
ran their models on our test set after it was trained
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in the setup described in their paper).

PCCA and DPCCA PCCA was im-
plemented with the scikit-learn http:
//www.scikit-learn.org package.
DPCCA is implemented in pytorch.1 Our
code is submitted with the paper.

3 Hyperparameter Tuning

The hyperparameters of the different models are
tuned with a grid search over the following val-
ues: {2,3,4,5} for number of layers, {tanh, sig-
moid, ReLU} as the activation functions (we use
the same activation function in all the layers of the
same network), {64,128,256} for minibatch size,
{0.001,0.0001} for learning rate, and {128,256}
for L (the size of the output vectors). The dimen-
sions of all mid-layers are set to the input size. We
use the Adam optimizer (Kingma and Ba, 2015),
with the number of epochs set to 300. As men-
tioned in the main paper, the size of the input layer
is 500 for the sentence task and 300 for the word
task. Note, that not all models have all the afore-
mentioned hyer-parameters (e.g. non-deep models
like CCA and PCCA do not have activation func-
tions and intermediate layers).

We used the word2vec skip-gram im-
plementation in the Gensim package
(http://radimrehurek.com/gensim/
index.html). We trained skip-gram
on the January 2017 Wikipedia dump
(http://dumps.wikimedia.org/), and on
the Wacky corpus (http://wacky.sslmit.
unibo.it/doku.php?id=corpora). For
visual features we use the publicly available
FC 7 features (Simonyan and Zisserman,
2015) (http://www.statmt.org/wmt16/
multimodal-task.html). Finally, the initial
vectors we use in the multilingual word similarity
task are available at http://github.com/
nmrksic/attract-repel.

For word similarity, following a standard prac-
tice (Levy et al., 2015; Vulić et al., 2017) we tune
all models on one half of the SimLex data and eval-
uate on the other half, and vice versa. The reported
score is the average of the two halves.

4 Word Similarity Results

As promised in §7 of the main paper, we com-
plement Table 2 of the main paper by presenting

1http://www.pytorch.org/.

similar tables for the EN-IT (Table 1) and EN-RU
(Table 2) setups. Like in the EN-DE setup, DPCCA
gets more substantial improvements on adjectives
and verbs compared to nouns. In both tables this
is true for both languages, with the exception of
English adjectives for the EN-RU setup, where the
GCCA baseline outperforms both DPCCA variants
(although DPCCA Variant B is the second best
model in that setup too).

Like in the EN-DE setup of table 2 of the main
paper, the DPCCA representations of the language
trained jointly with English (DE, IT or RU) gain
more than the English representations (in terms
of improvement over the best baseline on the
POS class). We keep the explanation of this phe-
nomenon to future work.

5 Qualitative Results

Cross-lingual Image Description Retrieval: Ex-
amples Figure 2 presents representative results
from the cross-lingual image description retrieval
task. Results are presented for DPCCA Variant B
and DCCA NOI - the strongest models on this task.
We split the examples to two parts: retrieval from
English to German, and retrieval from German to
English. In each part we show one example where
both models are correct, two examples where our
model is correct and the other model is incorrect,
and a final example where our model is incorrect
and the other model is correct.

These examples suggest that even when our
model retrieves an incorrect description, this de-
scription is close to the correct description, and
shares objects, or actions with it. For example, the
correct description for the bottom example is ”A
dog jumps over an obstacle outside”, while our
model retrieved the description ”A dog is jumping
through a fiery obstacle”. Indeed both description
share objects: dog and obstacle, as well as an ac-
tion: jump.

DCCA NOI, in contrast, does not show this fa-
vorable behavior. For example, in the second (from
top) EN-DE example it gets the main object incor-
rectly (footballers vs foxterrier), while in the third
(again from top) DE-EN example it gets the main
scene incorrectly (skateboarding rump vs. lake).

We observed these patterns quite frequently. In
many cases when DPCCA makes a mistake it still
generally understands the main scene, actions and
objects, while for DCCA NOI that was case only
in a small fraction of its mistakes. The above exam-
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English-Italian

Model EN-Adj EN-Verbs EN-Nouns IT-Adj IT-Verbs IT-Nouns

DPCCA (Variant A) 0.672 0.347 0.369 0.348 0.395 0.434
DPCCA (Variant B) 0.679 0.339 0.371 0.339 0.415 0.430

DCCA NOI (Wang et al., 2015b) 0.677 0.346 0.373 0.326 0.378 0.429
DCCA (Wang et al., 2015a) 0.639 0.253 0.365 0.264 0.333 0.413

PCCA (Rao, 1969) 0.638 0.326 0.317 0.323 0.347 0.402
CCA (Hotelling, 1936) 0.623 0.314 0.312 0.336 0.355 0.402

GCCA (Funaki and Nakayama, 2015) 0.670 0.326 0.386 0.297 0.356 0.382

INIT EMB 0.582 0.160 0.306 0.251 0.356 0.382

Table 1: Results on EN and IT SimLex-999 (POS-based evaluation). All scores are Spearman’s rank
correlations. INIT EMB refers to initial pre-trained monolingual word embeddings.

English-Russian

Model EN-Adj EN-Verbs EN-Nouns RU-Adj RU-Verbs RU-Nouns

DPCCA (Variant A) 0.658 0.322 0.370 0.446 0.375 0.434
DPCCA (Variant B) 0.672 0.328 0.378 0.438 0.355 0.431

DCCA NOI (Wang et al., 2015b) 0.663 0.325 0.374 0.431 0.370 0.425
DCCA (Wang et al., 2015a) 0.666 0.282 0.375 0.394 0.374 0.433

PCCA (Rao, 1969) 0.634 0.284 0.331 0.371 0.333 0.409
CCA (Hotelling, 1936) 0.633 0.284 0.330 0.362 0.348 0.407

GCCA (Funaki and Nakayama, 2015) 0.685 0.305 0.384 0.409 0.328 0.434
INIT EMB 0.582 0.160 0.306 0.370 0.350 0.420

Table 2: Results on EN and RU SimLex-999 (POS-based evaluation). All scores are Spearman’s rank
correlations. INIT EMB refers to initial pre-trained monolingual word embeddings.

ples also reflect on the difficulty of our sentence-
level tasks - the dataset often contains images and
descriptions that are very much alike.

As discussed in §7 of the main paper, in our quan-
titative results we therefore report the retrieval re-
sults using two metrics: R@1 that captures the frac-
tion of correct descriptions retrieved, and BLUE+1
that captures the number of shared n-grams be-
tween the query and the retrieved description.

Nearest Neighbors Examples In Figure 3 we
explore the monolingual spaces formulated from
DPCCA Variant B. We project the vocabulary of
the Multilingual SimLex-999 dataset by the learned
parameters, and seek for neighbor words in each
language. According to the figure, in fact, the gen-
erated neighborhoods contain mostly words that
are similar, rather than related. Examples for such
similarities are: month, week, year, day and week-
end which are all time units; or song, music, ballad,
melody, and hymn, which are all works of music
(or a part of it). There are also some examples for
words that are more related than similar such as
month and calendar; or essay and literature. An-
other interesting example comes from the closest
German words for the word dollar, which are me-
ter, centimeter and second. Although, not highly
similar, our algorithm projected them close to each
other, after having the understanding that they are
all unit measures of money, length and time.

Finally, our quantitative and qualitative results
indeed suggest that our algorithm did a significant
progress towards the ability to distinguish between
similarity to relatedness.



Figure 2: Example results from the cross-lingual image description retrieval task. Every example consists
of a query in the target language (Query), the relevant image (left to the text), and the retrieved descriptions
of DPCCA Variant B and of DCCA NOI. A green ”v” indicates a correct answer, while a red ”x” indicates
an incorrect answer.

Figure 3: Top 5 nearest neighbors in the Multilingual SimLex-999 dataset according to DPCCA Variant B.
Each table is related to one of the four English words (essay, month, song and dollar) and their translations
to German (DE), Italian (IT) and Russian (RU). For each word in each of the table titles we report the five
nearest neighbors in its own language according to cosine similarity between word vectors.
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