
Supplementary Material

A Queries with Negated Variables

Section 4.2 mentions that although the complement of a box is not a box, queries involving negated
variables can be calculated exactly with Inclusion-Exclusion, demonstrated in Table 5. While there are
many more interesting and efficient approaches, we simply use the formula for calculating the volume of
the union of hyperrectangles (a standard Inclusion-Exclusion formula).

This is equivalent since the intersection of complements of boxes is the complement of the union of
boxes. We first intersect all of the non-negated variables into one conjunction box, T . We then calculate
the volume of the union of T with all of the boxes representing complements of negated variables F =
¬f1,¬f2,¬f3, ..., v1 = (T [f1 [f2 [f3...) = 1 � P (¬T,¬f1,¬f2,¬f3, ...), and the volume of just
the negated variables’ boxes, v2 = (f1 [f2 [f3...) = 1� P (¬f1,¬f2,¬f3, ...). The probability of the
query is v1 � v2 = P (F)� P (¬T, F) = (P (T, F) + P (¬T, F))� P (¬T, F) = P (T, F), which was
the original query.

P(deer | ...)
P(deer) 0.12
¬white 0.13
animal 0.50
¬white,animal 0.54
¬white,animal,herbivore 0.73
¬white, animal, herbivore, ¬rabbit 0.80
¬white, animal, ¬herbivore,¬rabbit 0.00

Table 5: Negated variables: queries on the toy data with negated variables, calculated with Inclusion-
Exclusion.

B Properties of the Box Lattice

In this section, we cover some technical details about the box lattice model and its properties especially
as compared to the order embedding model.

B.1 Non-Distributivity

A lattice is called distributive if the following identity holds for all members x, y, z:

x ^ (y _ z) = (x ^ y) _ (x ^ z)

Claim. Order embeddings form a distributive lattice.

Proof. This is a standard results on vector lattices shown in e.g. (Zaanen, 1997)
A non-distributive lattice is a strictly more general object, capable of modeling more objects since it

does not necessarily need to fulfill the above identity for all triples x, y, z.

Claim. The box lattice is non-distributive.

Proof. Consider the box lattice in 1-dimension. Let x = [0, 0.3], y = [0.2, 0.6], and z = [0.5, 1.0]. Then
x ^ (y _ z) = [0.2, 0.3], but (x ^ y) _ (x ^ z) = [0, 0.6] _ ? = [0, 0.6].

This proves that the box lattice is a strict generalization of order embeddings, and not equivalent to
order embeddings of any dimensionality. Additionally, our choice of an example containing disjoint
elements hints at the importance of non-distributivity for our goal of modeling disjoint events.

B.2 Pseudocomplemented

A lattice is called pseudocomplemented if for every element x there exists a unique greatest element in
the lattice x⇤ that is disjoint from x and x ^ x⇤ = ?. The box lattice is almost always pseudocom-
plemented, aside from symmetry concerns (for example, a perfectly centered cube in the 2-dimensional
box lattice of side length < 1 has 4 possible equally large pseudocomplements. However any such
symmetries can always be infinitesimally perturbed without breaking order structure so the box lattice is
pseudocomplemented in a measure-theoretic sense. However, these pseudocomplements can be arbitrar-
ily bad approximations of the true complement set of a box, with the worst case scenario coming from
large, nearly-centered cubes.

C Asymmetrizing Score Matrices

C.1 Probabilistic Models

Assume we have a pairwise CPD between Bernoulli variables, and also have access to the unary
marginals for each Bernoulli, and further that no unary marginals are exactly identical. If they are exactly
identical, we can generate random independent Bernoulli parameters and their JPD, and take a small con-
vex combination with that to infinitesimally perturb the statistics, so this proof is valid everywhere but
on a set of measure 0 which we can approximate arbitrarily well.

Claim. If all unary marginals are distinct, taking the elements of the pairwise CPD, removing the diago-

nal, and deleting an entry if P (A|B) < P (B|A), that is if Aij < Aji, will result in a weighted adjacency

matrix for an acyclic directed graph

Proof. Order the variables x1...xn so that p(xi) < p(xj) if i < j. Now an entry of the CPD p(xi|xj) =
p(xi, xj)/p(xj) = Cij is less than Cji = p(xi, xj)/p(xi) if p(xi) < p(xj). So with the variables
so ordered, if we use the CPD to create an adjacency matrix with an edge Cij = 1 if and only if
p(xi) < p(xj), it will be upper triangular with 0 on the diagonal. This is a nilpotent matrix which means
it is the adjacency matrix of an acyclic graph. This can be easily seen since the entries of Ak are the
set of K-hop neighbors, and if this set eventually becomes empty, as in a nilpotent matrix, we have no
cycles.

Since the labeling of our vertices is arbitrary, this means that our adjacency matrix created by the
proposed asymmetrizing procedure is always acyclic since it is similar to an upper triangular matrix with
0s on the diagonal.

This holds as long as the unary marginals can always be ordered (which they can be except on a set of
measure zero, and in practice on it seems to work even if you ignore this constraint.

C.2 KL Divergences and Gaussian Embeddings

Assume the same setup as section C.1, but the scores in the matrix come from (possibly thresholded if
Aij �Aji < c) pairwise divergences between Gaussian embeddings.

Claim. There exist graphs produced by the above procedure that do not lead to directed acyclic graphs

if thresholded by deleting entries when Aij < Aji:

Proof. Consider the following set of 5 2-dimensional Gaussians with diagonal covariance:

G1 = N (x1; [�5,�3], diag ([3, 7]))

G2 = N (x2; [�3, 5], diag [(7, 4]))

G3 = N (x3; [�5,�6], diag ([8, 1]))

G4 = N (x4; [�7, 6], diag ([5, 5]))

G5 = N (x5; [9, 3], diag ([5, 9]))

Applying asymmetrization and even pruning at a threshold of c = 1 (which is non-nilpotent and does
affect edges) produces a cycle between nodes 5, 1, and 3. There are certain repeated numbers in the

parameters, but this is not the cause of the issue. They are whole numbers for ease of exposition, they
were randomly generated and many more examples can be created with arbitrary floating point numbers.

C.3 Order Embeddings

We simulated many millions of random sets of order embedding parameters, and created pairwise graphs
using the order embedding energy function, and were never able to find a cycle in the resulting asym-
metrized graphs. We conjecture that this is because the order embedding energy is essentially a La-
grangian relaxation term penalizing the violation of a true partial order relation, but have not proven
it.

Conjecture. Sets of Order Embeddings can be consistently asymmetrized into directed acyclic graphs

according to the procedure in section C.1.

D Model Parameters

D.1 WordNet Parameters

Since the WordNet data has binary 0, 1 links instead of calibrated probabilities, and the negative links
are found from random negative sampling, we constrain the delta embedding to not update for negative
samples during optimization. We found this was effective in preventing random negative samples from
decreasing the volume of the boxes and creating artificially disjoint pairs.

The WordNet parameters that achieved best performance on the development set (whose train set
performance we reported) are:

batch size: 800
dimension: 50
edge loss weight: 1.0
unary loss weight: 9.0
learning rate: 0.001
minimum dimension delta size: 1e-6
dimension-max regularization weight: 0.005
optimizer: Adam

For WordNet training with additional soft CPD edges, we use the same parameters. We also perform
pruning on the generated CPD file. We only include ht1, t2i pairs with probability � 0.6 and the reverse
pair ht2, t1i 0.4 probability.

We tune the batch size of the model between 800 and 40000 because bigger batch size facilitates faster
training. We also sweep over 1.0 to 9.0 for edge loss weight and 9.0 to 1.0 for the unary loss weight. The
learning rate we tune in � 2 {0.001, 0.0001}. The minimum dimension delta size we tune in 2 {0.01,
0.001, 0.0001, 0.00001, 0.000001}. The dimension-max regularization encourages the upper bound of
box to be close 1.0 with an L1 penalty to prevent collapse. We perform parameter search in {0.0, 0.001,
0.005, 0.01, 0.05, 0.1, 0.5}.

D.2 Flickr Parameters

The Flickr parameters that achieved best performance on the development set (whose train set perfor-
mance we reported) are:

batch size: 512
dropout: 0.5
unary loss weight: 8.0
edge loss weight: 2.0
learning rate: 0.0001
minimum dimension delta size: 1e-6
optimizer: Adam

The LSTM parameters are initialized with Glorot initialization (Glorot and Bengio, 2010), as are the
weight and bias parameters for the feedforward networks to produce the box minimums. The network
to produce the � embedding is initialized from a uniform distribution from [15.0, 15.50]. We clip to
zero for min embeddings (apply a ReLU), and apply a softplus to enforce the positivity and minimum
dimension size constraints on the � embeddings.

We also sweep over 1.0 to 9.0 for edge loss weight and 9.0 to 1.0 for the unary loss weight. The
learning rate � 2 {0.001, 0.0001}. We tried Glorot initialization with the � network as well, but since
we wanted a high degree of overlap at the beginning of training, we simply swept over different uniform
initialization ranges in [5.0, 5.5], [10.0, 10.5] and [15.0, 15.5].

