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Sufficient Condition for Eq. (3)

Given the non-negativity constraints of Eq. (2), a
sufficient condition for Eq. (3) to hold, is to further
impose the strict entailment constraints of Eq. (4).
In fact, given the constraints of Eq. (2) and Eq. (4),
we will always have

φ(ei, rp, ej) = 〈Re(ei),Re(rp),Re(ej)〉
+ 〈Im(ei),Re(rp), Im(ej)〉
+ 〈Re(ei), Im(rp), Im(ej)〉
− 〈Im(ei), Im(rp),Re(ej)〉

≤ 〈Re(ei),Re(rq),Re(ej)〉
+ 〈Im(ei),Re(rq), Im(ej)〉
+ 〈Re(ei), Im(rq), Im(ej)〉
− 〈Im(ei), Im(rq),Re(ej)〉

= φ(ei, rq, ej)

for any two entities ei, ej ∈ E , i.e., Eq. (3). Here,
the first two terms of the inequality hold because
Re(rp) ≤ Re(rq), and the last two terms because
Im(rp) = Im(rq), given the condition that Re(e),
Im(e) ≥ 0 for every e ∈ E .

Equivalence between Eq. (7) and Eq. (8)

We first rewrite the constraints of the optimization
Eq. (7). Specifically, the two constraints

α ≥ λ
(
Re(rp)− Re(rq)

)
, α ≥ 0

can be rewritten as a single one, i.e.,

α ≥ λ
[
Re(rp)− Re(rq)

]
+
,

where [x]+ = max(0,x) with max(·, ·) being an
entry-wise operator. Similarly, the two constraints

β ≥ λ
(
Im(rp)− Im(rq)

)2
, β ≥ 0
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degenerate to a single one, i.e.,

β ≥ λ
(
Im(rp)− Im(rq)

)2
.

As the objective function of Eq. (7) has to mini-
mize 1>(α+β) over all possible α,β, an optimal
value for this term will be

λ1>
[
Re(rp)−Re(rq)

]
+

+λ1>
(
Im(rp)−Im(rq)

)2
.

Plugging this back into the objective function and
removing the degenerated constraints, we will ob-
tain the optimization of Eq. (8).

Properties of Equivalence, Inversion, and
Ordinary Entailment

For ordinary entailment rp → rq (neither equiva-
lence nor inversion), the constraints of Eq. (4) di-
rectly suggest

Re(rp) ≤ Re(rq), Im(rp) = Im(rq).

For equivalence rp ↔ rq (rp → rq and rq → rp),
we ought to have

Re(rp) ≤ Re(rq), Im(rp) = Im(rq),

Re(rq) ≤ Re(rp), Im(rq) = Im(rp),

which imply rp=rq. Since

φ(ei, rk, ej) = Re(〈ei, rk, ēj〉)
= Re(〈ej , r̄k, ēi〉)
, φ(ej , r

−1
k , ei)

for any ei, ej ∈ E and rk ∈ R, we could represent
the inverse of relation rk (i.e. r−1k ) as the conjugate
of rk (i.e. r̄k). Then for inversion rp ↔ r−1q , we
ought to have rp = r̄q.
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Figure 1: Visualization of imaginary compo-
nents of entity representations (rows) learned by
ComplEx-NNE+AER (left) and ComplEx (right).
From top to bottom, entities belong to reptile,
wine region, species, programming language

in turn. Values range from 0 (white) via 0.5 (or-
ange) to 1 (black). Best viewed in color.
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Figure 2: Average entropy over all dimensions
of imaginary components of entity representation-
s learned by ComplEx (circles), ComplEx-NNE
(squares), and ComplEx-NNE+AER (triangles) as
K varies.

Analyses on Imaginary Components of
Entity Representations

We conduct the same analyses on imaginary com-
ponents of entity representations as those conduct-
ed on real ones (§ 4.3). Figure 1 visualizes imagi-
nary components of entity representations learned
by ComplEx and ComplEx-NNE+AER, with the
optimal configurations determined by link predic-
tion. Figure 2 shows average entropy along imagi-
nary components of entity representations learned
by ComplEx, ComplEx-NNE, and ComplEx-NNE
+AER.


