A La Carte Embedding: Cheap but Effective Induction of Semantic Feature Vectors

Mikhail Khodak^{*,1}, Nikunj Saunshi^{*,1}, Yingyu Liang², Tengyu Ma³, Brandon Stewart¹, Sanjeev Arora¹

1: Princeton University, 2: University of Wisconsin-Madison, 3: FAIR/Stanford University

Motivations

Distributed representations for words / text have had lots of successes in NLP (language models, machine translation, text classification)

Motivations

Distributed representations for words / text have had lots of successes in NLP (language models, machine translation, text classification)

Motivations for our work:

• Can we induce embeddings for all kinds of features, especially those with very few occurrences (e.g. ngrams, rare words)

Motivations

Distributed representations for words / text have had lots of successes in NLP (language models, machine translation, text classification)

Motivations for our work:

- Can we induce embeddings for all kinds of features, especially those with very few occurrences (e.g. ngrams, rare words)
- Can we develop simple methods for unsupervised text embedding that compete well with state-of-the-art LSTM methods

ACL 2018

Motivations

• Can we develop simple methods for unsupervised text embedding that compete well with state-of-the-art LSTM methods

Word embeddings

- Core idea: Cooccurring words are trained to have high inner product
 - E.g. LSA, word2vec, GloVe and variants

Word embeddings

- Core idea: Cooccurring words are trained to have high inner product
 - E.g. LSA, word2vec, GloVe and variants
- Require few passes over a very large text corpus and do non-convex optimization

Word embeddings

- Core idea: Cooccurring words are trained to have high inner product
 - E.g. LSA, word2vec, GloVe and variants
- Require few passes over a very large text corpus and do non-convex optimization

 Used for solving analogies, language models, machine translation, text classification ...

- Capturing meaning of other natural language features
 - E.g. ngrams, phrases, sentences, annotated words, synsets

- Capturing meaning of other natural language features
 - E.g. ngrams, phrases, sentences, annotated words, synsets
- Interesting setting: features with zero or few occurrences

- Capturing meaning of other natural language features
 - E.g. ngrams, phrases, sentences, annotated words, synsets
- Interesting setting: features with zero or few occurrences
- One approach (extension of word embeddings): Learn embeddings for all features in a text corpus

Issues

- Usually need to learn embeddings for all features together
 - Need to learn many parameters
 - Computation cost paid is *prix fixe* rather than à la carte
- Bad quality for **rare features**

Firth revisited: Feature derives meaning from **words** around it

Firth revisited: Feature derives meaning from **words** around it

Given a feature f and one (few) context(s) of words around it, can we find a reliable embedding for f efficiently?

Firth revisited: Feature derives meaning from **words** around it

Given a feature f and one (few) context(s) of words around it, can we find a reliable embedding for f efficiently?

Scientists attending ACL work on cutting edge research in NLP

Petrichor: the earthy scent produce when rain falls on dry soil

Roger Federer won the first **set^{NN}** of the match

Problem setup

Given: Text corpus and high quality word embeddings trained on it

Linear approach

• Given a feature f and words in a context c around it

$$v_f^{avg} = \frac{1}{|c|} \sum_{w \in c} v_w$$

Linear approach

• Given a feature f and words in a context c around it

$$v_f^{avg} = \frac{1}{|c|} \sum_{w \in c} v_w$$

- Issues
 - stop words ("is", "the") are frequent but are less informative
 - Word vectors tend to share common components which will be amplified

ACL 2018

Potential fixes

• Ignore stop words

Potential fixes

- Ignore stop words
- SIF weights¹: Down-weight frequent words (similar to tf-idf)

$$v_f = \frac{1}{|c|} \sum_{w \in c} \alpha_w \, v_w$$

$$\alpha_w = \frac{a}{a + p_w}$$

 p_w is frequency of w in corpus

Potential fixes

- Ignore stop words
- SIF weights¹: Down-weight frequent words (similar to tf-idf)

• All-but-the-top²: Remove the component of top direction from word vectors

$$v_f = \frac{1}{|c|} \sum_{w \in c} v'_w = (I - uu^T) v_w^{avg}$$

$$u = top_direction(\{v_w\})$$

$$v'_w = remove_component(v_w, u)$$

Our more general approach

• Down-weighting and removing directions can be achieved by matrix multiplication

$$v_f \approx A \frac{1}{|c|} \sum_{w \in c} v_w = A v_f^{avg}$$
 Induced Embedding Induction Matrix

Our more general approach

• Down-weighting and removing directions can be achieved by matrix multiplication

$$v_f \approx A \frac{1}{|c|} \sum_{w \in c} v_w = A v_f^{avg}$$
 Induced Embedding Induction Matrix

• Learn A by using words as features

$$A^* = argmin_A \sum_{w} |v_w - Av_w^{avg}|_2^2$$

• Learn A by linear regression and is unsupervised

Theoretical justification

• [Arora et al. TACL '18] prove that under a generative model for text, there exists a matrix A which satisfies

$$v_w \approx A v_w^{avg}$$

Theoretical justification

• [Arora et al. TACL '18] prove that under a generative model for text, there exists a matrix A which satisfies

$$v_w \approx A v_w^{avg}$$

• Empirically we find that the best A^* recovers the original word vectors

$$cosine(v_w, A^*v_w^{avg}) \ge 0.9$$

ACL 2018

A la carte embeddings

1. Learn induction matrix

$$A^* = argmin_A \sum_{w} |v_w - Av_w^{avg}|_2^2$$

ACL 2018

A la carte embeddings

1. Learn induction matrix

$$A^* = argmin_A \sum_{w} |v_w - Av_w^{avg}|_2^2$$

2. A la carte embeddings

$$v_f^{alc} = A^* v_f^{avg} = A^* \left(\frac{1}{|c|} \sum_{w \in c} v_w \right)$$

A la carte embeddings

1. Learn induction matrix

$$A^* = argmin_A \sum_{w} |v_w - Av_w^{avg}|_2^2$$

2. A la carte embeddings

$$v_f^{alc} = A^* v_f^{avg} = A^* \left(\frac{1}{|c|} \sum_{w \in c} v_w \right)$$

Advantages

- à la carte: Compute embedding only for given feature
- Simple optimization: Linear regression
- **Computational efficiency:** One pass over corpus and contexts
- Sample efficiency: Learn only d^2 parameters for A^* (rather than Vd)
- Versatility: Works for any feature which has at least 1 context

Effect of induction matrix

 We plot the extent to which A* down-weights words against frequency of words compared to all-but-the-top

Effect of induction matrix

 We plot the extent to which A* down-weights words against frequency of words compared to all-but-the-top

 A^* mainly down-weights words with very high and very low frequency

All-but-the-top mainly down-weights frequent words

Effect of number of contexts

Contextual Rare Words (CRW) dataset¹ providing contexts for rare words

- Task: Predict human-rated similarity scores for pairs of words
- Evaluation: Spearman's rank coefficient between inner product and score

Effect of number of contexts

Contextual Rare Words (CRW) dataset¹ providing contexts for rare words

- Task: Predict human-rated similarity scores for pairs of words
- Evaluation: Spearman's rank coefficient between inner product and score

Compare to the following methods:

- Average of words in context
- Average of non stop words
- SIF weighted average
- all-but-the-top

Nonce definitional task¹

- Task: Find embedding for unseen word/concept given its definition
- Evaluation: Rank of word/concept based on cosine similarity with true embedding

iodine: is a chemical element with symbol I and atomic number 53

Nonce definitional task¹

- Task: Find embedding for unseen word/concept given its definition
- Evaluation: Rank of word/concept based on cosine similarity with true embedding

iodine: is a chemical element with symbol I and atomic number 53

	Method	Mean Reciprocal Rank	Median Rank		
modified version of word2vec	word2vec	0.00007	111012		
	average	0.00945	3381		
	average, no stop words	0.03686	861 623		
	nonce2vec ¹	0.04907			
	à la carte	0.07058	165.5		

Ngram embeddings

Induce embeddings for ngrams using contexts from a text corpus

We evaluate the quality of embedding for a bigram $f = (w_1, w_2)$ by looking at closest words to this embedding by cosine similarity.

Method	beef up	cutting edge	harry potter	tight lipped
$v_f^{add} = v_{w_1} + v_{w_2}$	meat, out	cut, edges	<mark>deathly</mark> , <mark>azkaban</mark>	loose, fitting
v_f^{avg}	but, however	which, both	which, but	but, however
ECO ¹	meats, meat	weft, edges	robards, keach	scaly, bristly
Sent2Vec ²	<mark>add</mark> , reallocate	<mark>science</mark> , multidisciplinary	naruto, pokemon	wintel, codebase
à la carte $(A^* v_f^{avg})$	need, <mark>improve</mark>	<mark>innovative</mark> , <mark>technology</mark>	<mark>deathly</mark> , <mark>hallows</mark>	<mark>worried</mark> , very

Unsupervised text embeddings

Unsupervised text embeddings

and LSTMs on some tasks

Linear schemes are typically weighted sums of ngram embeddings

Linear schemes are typically weighted sums of ngram embeddings

Linear schemes are typically weighted sums of ngram embeddings

$$v_{document}^{alc} = \left[\sum v_{word}, \sum v_{bigram}^{alc}, \dots, \sum v_{ngram}^{alc} \right]$$

	Method	n	dimension	MR	CR	SUBJ	MPQA	TREC	SST (±1)	SST	IMDB
Sparse -	Bag-of-ngrams	1-3	100K-1M	77.8	78.3	91.8	85.8	90.0	80.9	42.3	89.8
LSTM	Skip-thoughts ¹		4800	80.3	83.8	94.2	88.9	<u>93.0</u>	85.1	45.8	
	SDAE ²		2400	74.6	78.0	90.8	86.9	78.4			
	CNN-LSTM ³		4800	77.8	82.0	93.6	89.4	92.6			
	MC-QT ⁴		4800	<u>82.4</u>	<u>86.0</u>	<u>94.8</u>	<u>90.2</u>	92.4	<u>87.6</u>		
Linear	DisC ⁵	2-3	≤ 4800	80.1	81.5	92.6	87.9	90.0	85.5	46.7	89.6
	Sent2Vec ⁶	1-2	700	76.3	79.1	91.2	87.2	85.8	80.2	31.0	85.5
	à la carte	2	2400	81.3	83.7	93.5	87.6	89.0	85.8	47.8	90.3
		3	4800	81.8	84.3	93.8	87.6	89.0	86.7	<u>48.1</u>	<u>90.9</u>

1: Kiros et al. '15, 2: Hill et al. '16, 3: Gan et al. '17, 4: Logeswaran and Lee '18, 5: Arora et al. '18, 6: Pagliardini et al. '18

Conclusions

- Simple and efficient method for inducing embeddings for many kinds of features, given at least one context of usage
- Embeddings produced are in same semantic space as word embeddings
- Good empirical performance for rare words, ngrams and synsets
- Text embeddings that compete with unsupervised LSTMs

Code is on github: <u>https://github.com/NLPrinceton/ALaCarte</u> CRW dataset available: <u>http://nlp.cs.princeton.edu/CRW/</u>

Future work

- Zero shot learning of feature embeddings
 - Compositional approaches
- Harder to annotate features (synsets)
- Contexts based on other syntactic structures

ACL 2018

Thank you!

Questions?

{nsaunshi, mkhodak}@cs.princeton.edu