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The generated translation length to reference length ratio is on average 7% higher 
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Altering only one word per sentence 

Closest work is back-translation of monolingual data 
(Sennrich et al. ACL 2016)

Our approach focuses on non meaning-preserving 
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I had been told that you would voluntarily be speaking today.
mir wurde signalisiert, sie würden heute freiwillig sprechen.

New sentence pair:

Altering one or multiple words per sentence 

TDA significantly improves translation quality
Substituting several rare words is preferable even 
though the augmented sentences are likely to be noisier
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I had been told that you would not be speaking today .

mir wurde signalisiert , sie würden heute nicht sprechen .
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Image Processing

Has not been done in Natural Language Processing

One possible approach is paraphrasing which is meaning-
preserving

Flipping, cropping, tilting, altering the RGB channels
Neural Machine Translation models perform best when an abundance of parallel 
data is available 
Acquiring human translations for low-resource language pairs is costly

Our approach

As a result training with the augmented bitext achieves significant BLEU 
improvements in a simulated low-resource English⬌German translation setting

alters existing parallel sentences targeting low-frequency words
augments the data by generating new diverse context for low-frequency 
words and the corresponding translations

We present a data augmentation technique to enrich the training data targeting rare words

Increasing the size of the training data by diversifying the context of rare words yields better translations

Generation of correct rare words during translation increases

The attention scores of rare words are on average 8.8% higher than the baseline model

Hence translation of low-frequency words is difficult and often inaccurate
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Simulated low-resource MT setting 
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