Data Augmentation for Low-Resource **Neural Machine Translation**

Marzieh Fadaee Arianna Bisazza **Christof Monz** Informatics Institute, University of Amsterdam

Summary

- Neural Machine Translation models perform best when an abundance of parallel data is available
- Acquiring human translations for low-resource language pairs is costly
- Hence translation of low-frequency words is difficult and often inaccurate
- Our approach
 - alters existing parallel sentences targeting low-frequency words
 - augments the data by generating new diverse context for low-frequency words and the corresponding translations

Data Augmentation

- Image Processing
 - Flipping, cropping, tilting, altering the RGB channels
- Has not been done in Natural Language Processing
- One possible approach is paraphrasing which is meaningpreserving
- Our approach focuses on non meaning-preserving
- As a result training with the augmented bitext achieves significant BLEU improvements in a simulated low-resource English \leftrightarrow German translation setting

Approach: Translation Data Augmentation (TDA)

- augmentation
- Closest work is back-translation of monolingual data (Sennrich et al. ACL 2016)

NMT Results (BLEU)

DE-	→EN
-----	-----

Model	Data	testset2014	testset2015	testset2016
Baseline	371K	10.6	11.3	13.1
$Back-trans_{12}$	1 731K	11.4 (+0.8)	12.2 (+0.9)	14.6 (+1.5)
$\overline{\mathrm{TDA}_{r=1}}$	4.5M	11.9 (+1.3) ^{•, -}	13.4 (+2.1) ^{•,•}	15.2 (+2.1) ^{*,}
$\mathrm{TDA}_{r\geq 1}$	6M	12.6 (+2.0) ^{•,•}	13.7 (+2.4) ^{•,•}	15.4 (+2.3) ^{•, '}

EN→DE

Model	Data	testset2014	testset2015	testset2016
Baseline	371K	8.2	9.2	11.0
$Back-trans_{1:1}$	731K	9.0 (+0.8)	10.4 (+1.2)	12.0 (+1.0)
$TDA_{r=1}$	4.5M	10.4 (+2.2)*.*	11.2 (+2.0)	13.5 (+2.5)*,4
$\mathrm{TDA}_{r\geq 1}$	6M	10.7 (+2.5) ^{•,•}	11.5 (+2.3) ^{•,•}	13.9 (+2.9) ^{•, •}

I had been told that you would voluntarily be speaking today.

Altering only one word per sentence Altering one or multiple words per sentence

- Simulated low-resource MT setting
- TDA significantly improves translation quality
- Substituting several rare words is preferable even though the augmented sentences are likely to be noisier

Rare Translation Generation ($DE \rightarrow EN$)

55th Annual Meeting of the Association for Computational Linguistics (ACL 2017), Vancouver, Canada