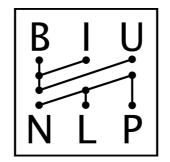
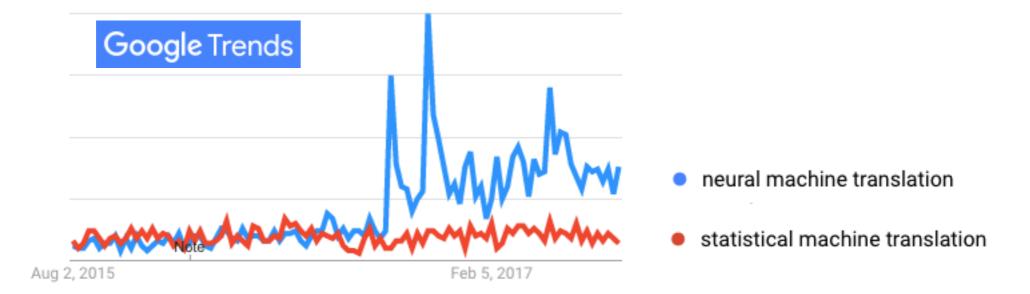
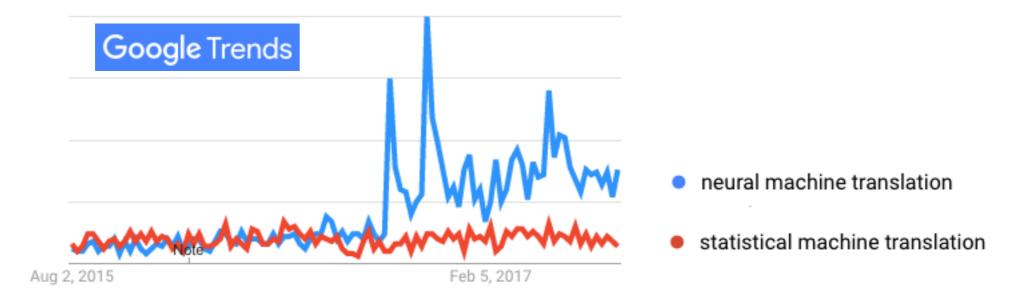
Towards String-to-Tree Neural Machine Translation

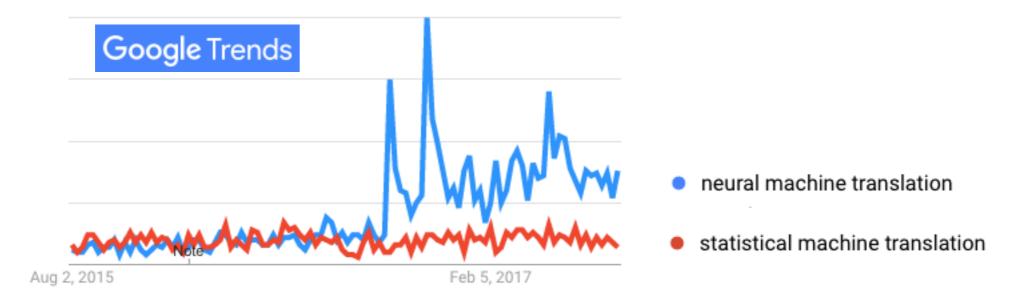
Roee Aharoni & Yoav Goldberg NLP Lab, Bar Ilan University ACL 2017







• Driving the current state-of-the-art (Sennrich et al., 2016)



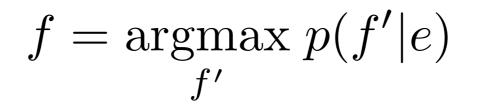
- Driving the current state-of-the-art (Sennrich et al., 2016)
- Widely adopted by the industry

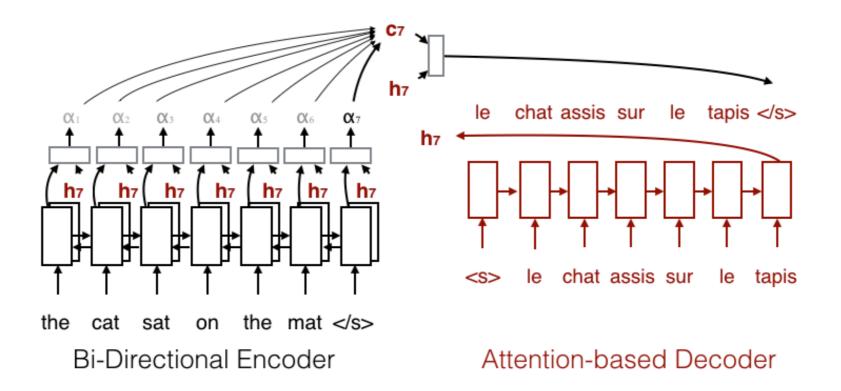
Seq2Seq with Attention

Bahdanau et al. (2015)

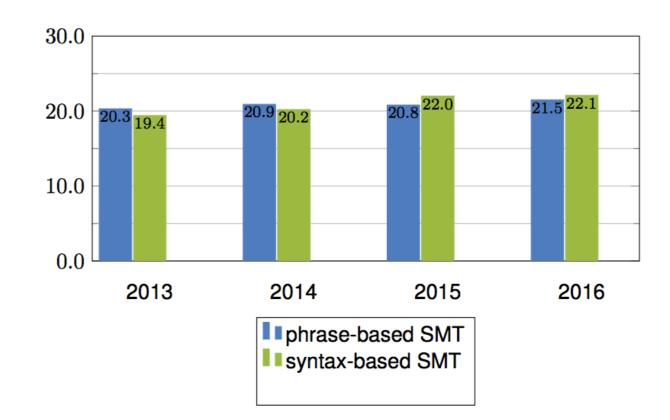
Seq2Seq with Attention

Bahdanau et al. (2015)



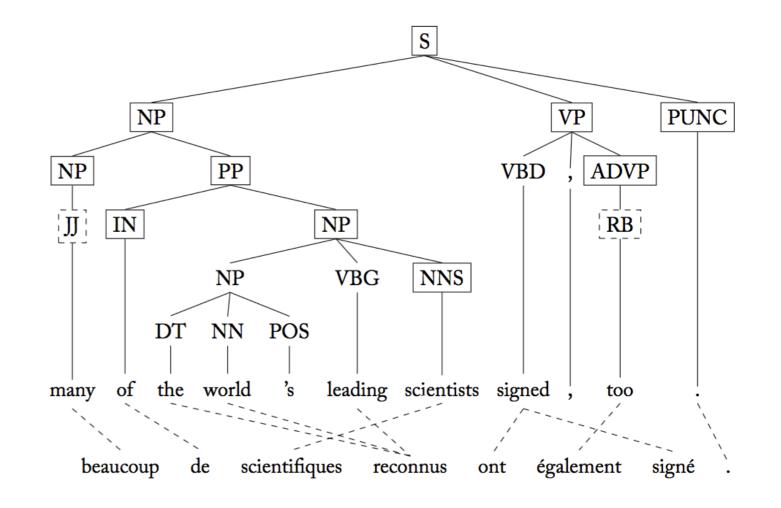


• The "previous" state-of-theart was syntax-based SMT



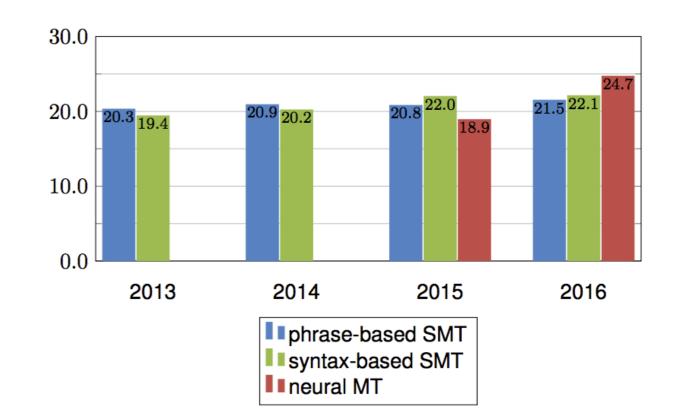
From Rico Sennrich, "NMT: Breaking the Performance Plateau", 2016

- The "previous" state-of-theart was syntax-based SMT
- i.e. systems that used linguistic information (usually represented as parse trees)



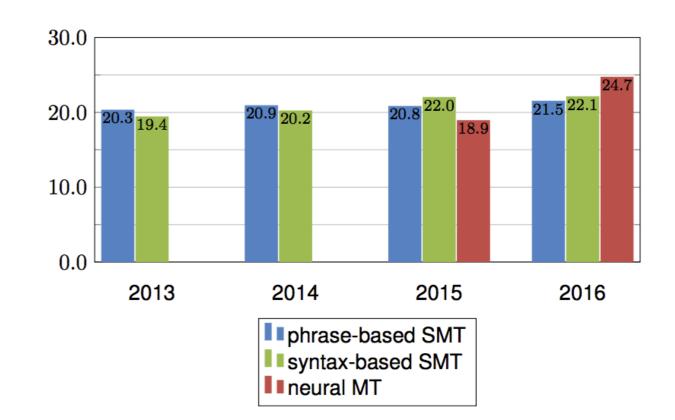
From Williams, Sennrich, Post & Koehn (2016), "Syntax-based Statistical Machine Translation"

- The "previous" state-of-theart was syntax-based SMT
- i.e. systems that used linguistic information (usually represented as parse trees)
- "Beaten" by NMT in 2016



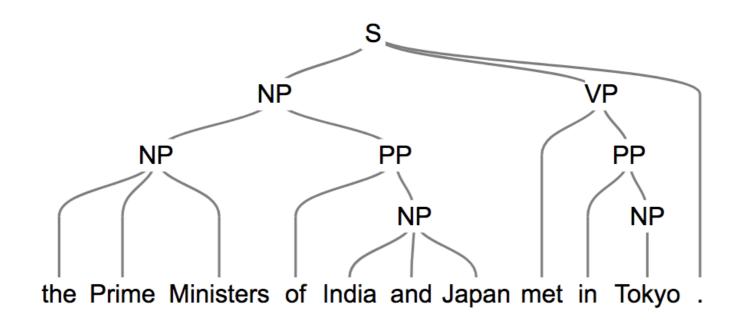
From Rico Sennrich, "NMT: Breaking the Performance Plateau", 2016

- The "previous" state-of-theart was syntax-based SMT
- i.e. systems that used linguistic information (usually represented as parse trees)
- "Beaten" by NMT in 2016
- Can we bring the benefits of syntax into the recent neural systems?

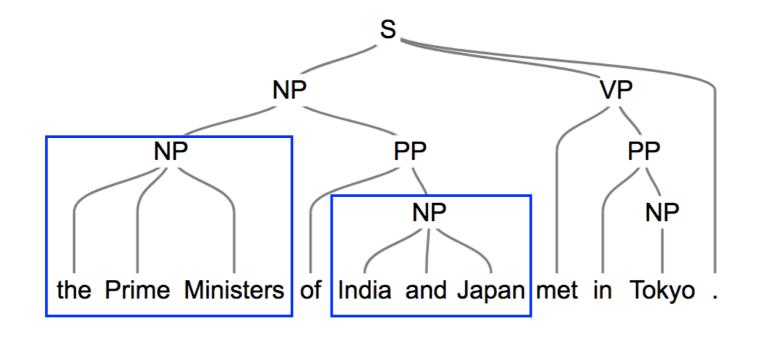


From Rico Sennrich, "NMT: Breaking the Performance Plateau", 2016

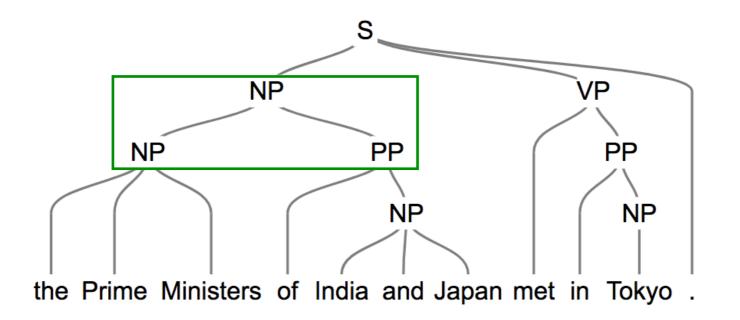
• A Constituency (a.k.a Phrase-Structure) grammar defines a set of rewrite rules which describe the **structure** of the language.



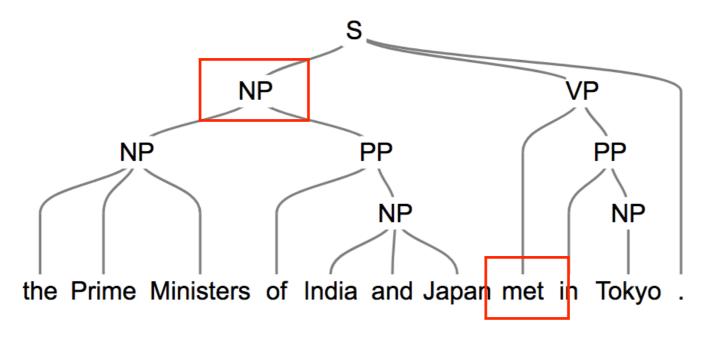
- A Constituency (a.k.a Phrase-Structure) grammar defines a set of rewrite rules which describe the **structure** of the language.
 - Groups words into larger units (constituents)



- A Constituency (a.k.a Phrase-Structure) grammar defines a set of rewrite rules which describe the **structure** of the language.
 - Groups words into larger units (constituents)
 - Defines a **hierarchy** between constituents



- A Constituency (a.k.a Phrase-Structure) grammar defines a set of rewrite rules which describe the **structure** of the language.
 - Groups words into larger units (constituents)
 - Defines a **hierarchy** between constituents
 - Draws relations between different constituents (words, phrases, clauses...)

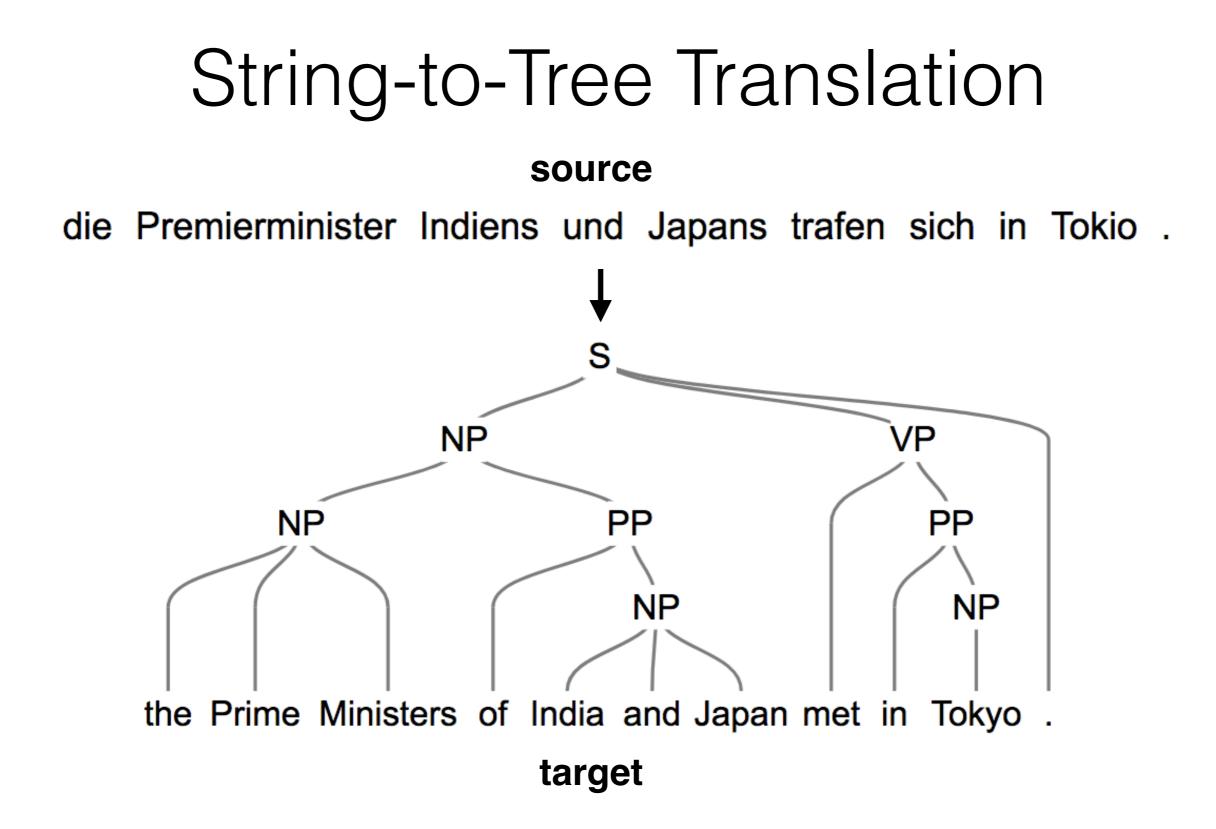


• Hints as to which word sequences belong together

- Hints as to which word sequences belong together
- Helps in producing **well structured** sentences

- Hints as to which word sequences belong together
- Helps in producing **well structured** sentences
- Allows **informed reordering** decisions according to the syntactic structure

- Hints as to which word sequences belong together
- Helps in producing **well structured** sentences
- Allows informed reordering decisions according to the syntactic structure
- Encourages long-distance dependencies when selecting translations



Jane hatte eine Katze.

source

Jane hatte eine Katze . ightarrow

Jane

had a cat

٠

source

target

Jane hatte eine Katze . \rightarrow (_{ROOT} (_S (_{NP} Jane)_{NP} (_{VP} had (_{NP} a cat)_{NP})_{VP} .

source

target

Main idea: translate a source sentence into a linearized tree of the target sentence

Jane hatte eine Katze . \rightarrow (_{ROOT} (_S (_{NP} Jane)_{NP} (_{VP} had (_{NP} a cat)_{NP})_{VP} .

source

target

- Main idea: translate a source sentence into a linearized tree of the target sentence
 - Inspired by works on RNN-based syntactic parsing (Vinyals et. al, 2015, Choe & Charniak, 2016)

Jane hatte eine Katze \rightarrow (*_{ROOT}* (*_S* (*_{NP}* **Jane**)*_{NP}* (*_{VP}* **had** (*_{NP}* **a cat**)*_{NP}*)*_{VP}* \rightarrow

source

target

- Main idea: translate a source sentence into a linearized tree of the target sentence
 - Inspired by works on RNN-based syntactic parsing (Vinyals et. al, 2015, Choe & Charniak, 2016)
- Allows using the seq2seq framework as-is

Experimental Details

- We used the Nematus toolkit (Sennrich et al. 2017)
- Joint BPE segmentation (Sennrich et al. 2016)
- For training, we parse the target side using the BLLIP parser (McClosky, Charniak and Johnson, 2006)
- Requires some care about making BPE, Tokenization and Parser work together

• German to English, **4.5 million** parallel training sentences from WMT16

- German to English, **4.5 million** parallel training sentences from WMT16
- Train two NMT models using the same setup (same settings as the SOTA neural system in WMT16)

- German to English, **4.5 million** parallel training sentences from WMT16
- Train two NMT models using the same setup (same settings as the SOTA neural system in WMT16)
 - syntax-aware (bpe2tree)

- German to English, **4.5 million** parallel training sentences from WMT16
- Train two NMT models using the same setup (same settings as the SOTA neural system in WMT16)
 - syntax-aware (bpe2tree)
 - syntax-agnostic baseline (bpe2bpe)

- German to English, **4.5 million** parallel training sentences from WMT16
- Train two NMT models using the same setup (same settings as the SOTA neural system in WMT16)
 - syntax-aware (bpe2tree)
 - syntax-agnostic baseline (bpe2bpe)
- The syntax-aware model performs better in terms of BLEU

	system	newstest2015	newstest2016
Single	bpe2bpe	27.33	31.19
Model	bpe2tree	27.36	32.13
5 Model	bpe2bpe ens.	28.62	32.38
Ensemble	bpe2tree ens.	28.7	33.24 🖛

Experiments - Low Resource

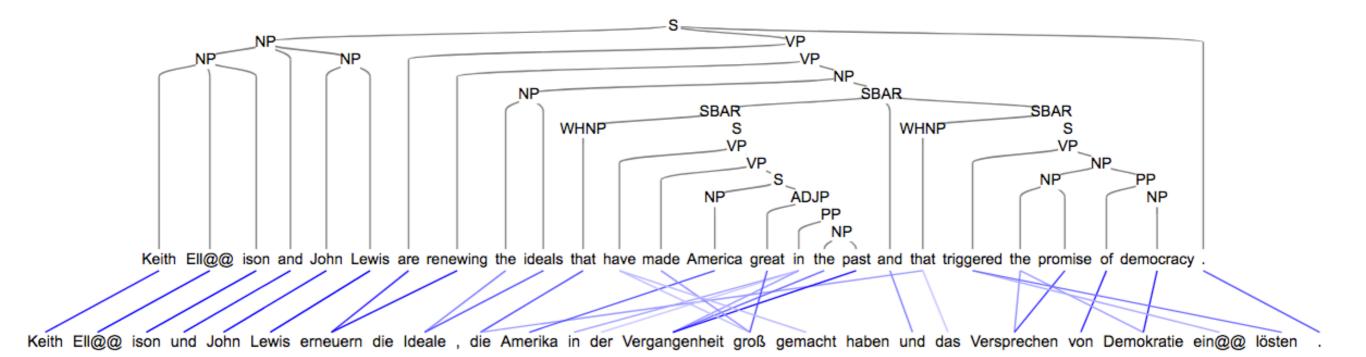
- German/Russian/Czech to English - 180k-140k parallel training sentences (News Commentary v8)
- The syntax-aware model performs better in terms of BLEU in **all** cases (12 comparisons)
- Up to 2+ BLEU improvement

	system	newstest2015	newstest2016
DE-EN	bpe2bpe	13.81	14.16
	bpe2tree	14.55	16.13
	bpe2bpe ens.	14.42	15.07
	bpe2tree ens.	15.69	17.21
RU-EN	bpe2bpe	12.58	11.37
	bpe2tree	12.92	11.94 ┥
	bpe2bpe ens.	13.36	11.91
	bpe2tree ens.	13.66	12.89
CS-EN	bpe2bpe	10.85	11.23
	bpe2tree	11.54	11.65 🔶
	bpe2bpe ens.	11.46	11.77
	bpe2tree ens.	12.43	12.68

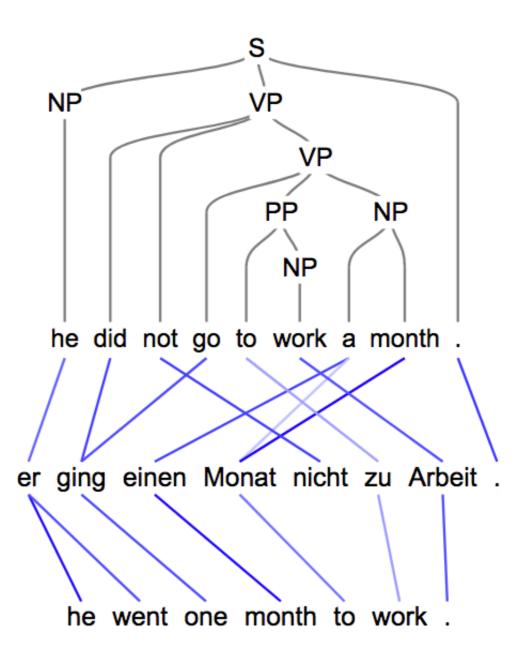
Looking Beyond BLEU

Accurate Trees

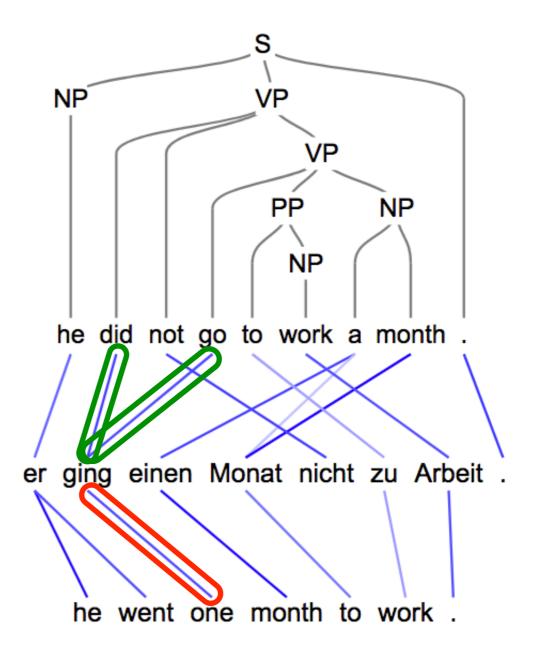
- 99% of the predicted trees in the development set had valid bracketing
- Eye-balling the predicted trees found them well-formed and following the syntax of English.



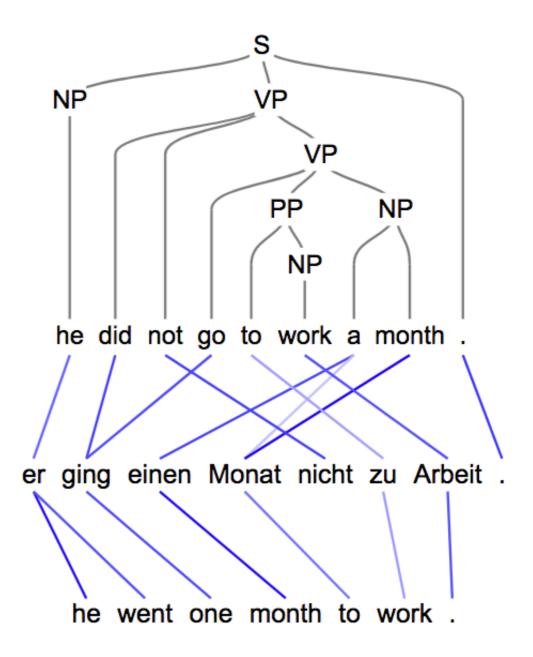
 The attention based model induces soft
 alignments between the source and the target



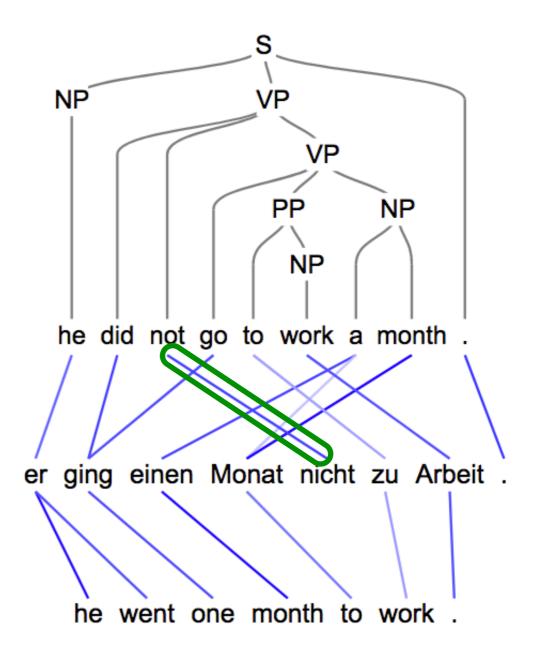
- The attention based model induces soft
 alignments between the source and the target
- The syntax-aware model produced more sensible alignments



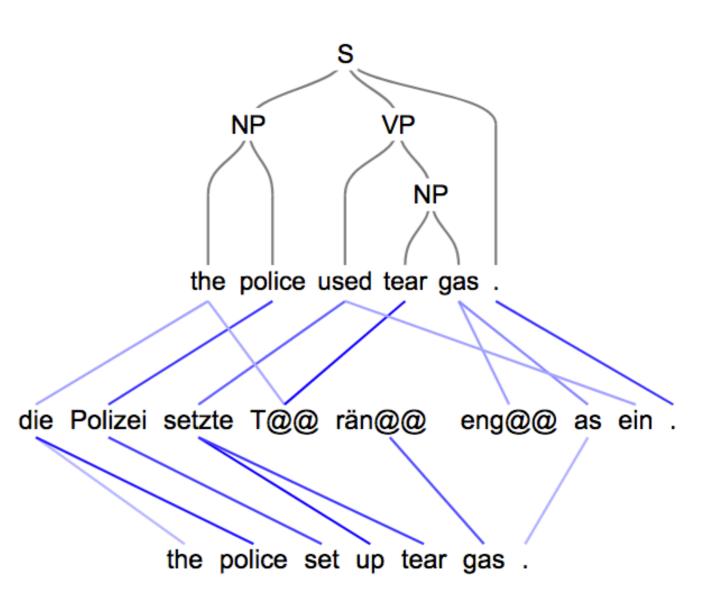
- The attention based model induces soft
 alignments between the source and the target
- The syntax-aware model produced more sensible alignments



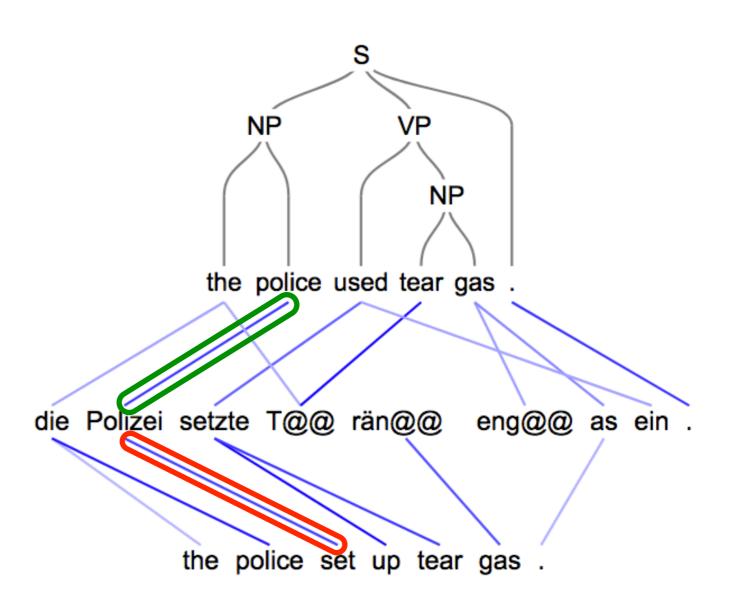
- The attention based model induces soft
 alignments between the source and the target
- The syntax-aware model produced more sensible alignments



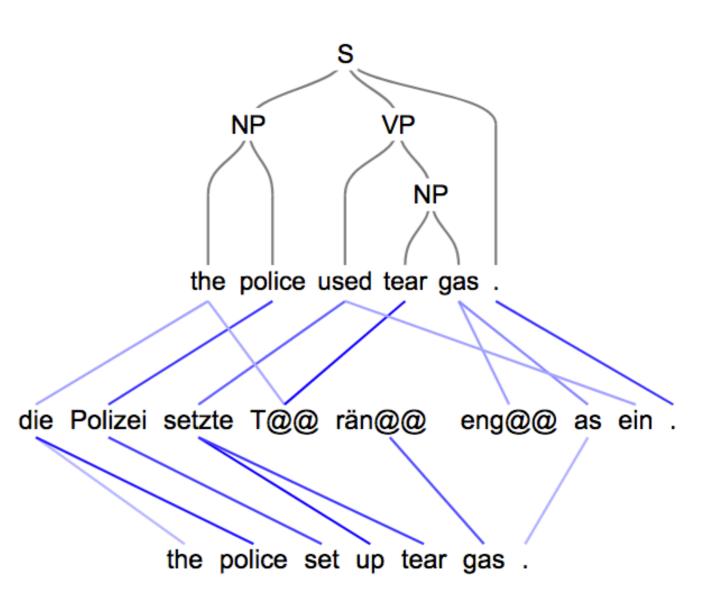
- The attention based model induces soft
 alignments between the source and the target
- The syntax-aware model produces more sensible alignments



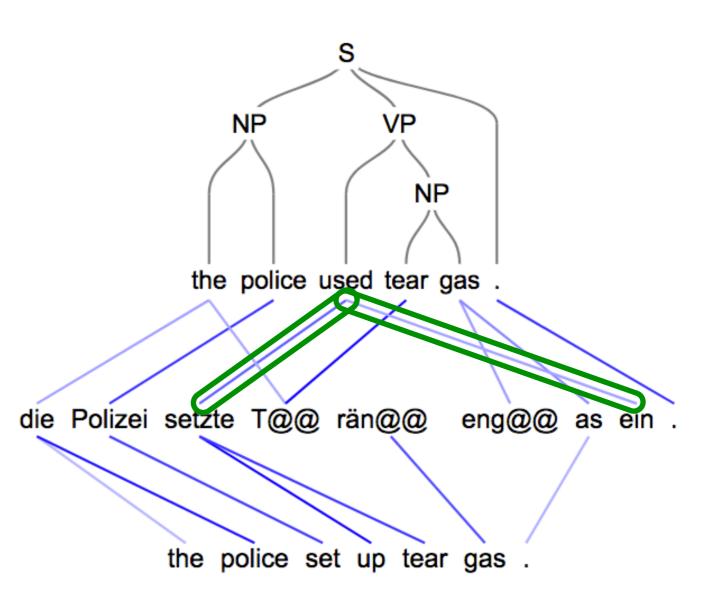
- The attention based model induces soft
 alignments between the source and the target
- The syntax-aware model produces more sensible alignments



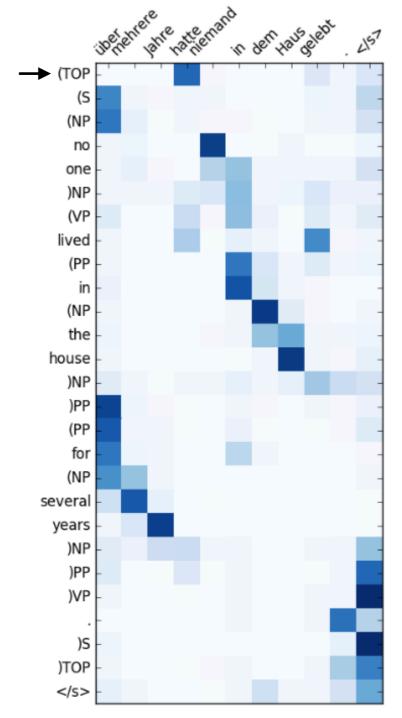
- The attention based model induces soft
 alignments between the source and the target
- The syntax-aware model produces more sensible alignments



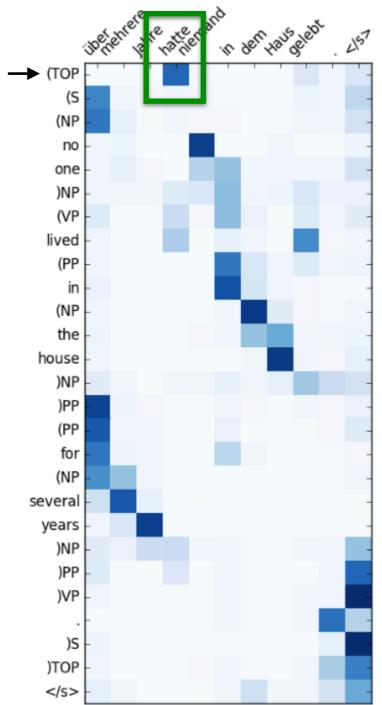
- The attention based model induces soft
 alignments between the source and the target
- The syntax-aware model produces more sensible alignments



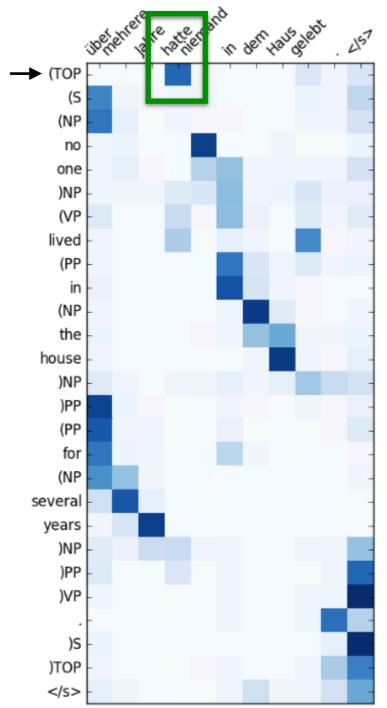
 We inspected the attention weights during the production of the tree's opening brackets



- We inspected the attention weights during the production of the tree's opening brackets
- The model consistently attends to the main verb ("hatte") or to structural markers (question marks, hyphens...) in the source sentence



- We inspected the attention weights during the production of the tree's opening brackets
- The model consistently attends to the main verb ("hatte") or to structural markers (question marks, hyphens...) in the source sentence
- Indicates the system implicitly learns source syntax to some extent (Shi, Padhi and Knight, 2016) and possibly plans the decoding accordingly



Where Syntax Helps? Structure

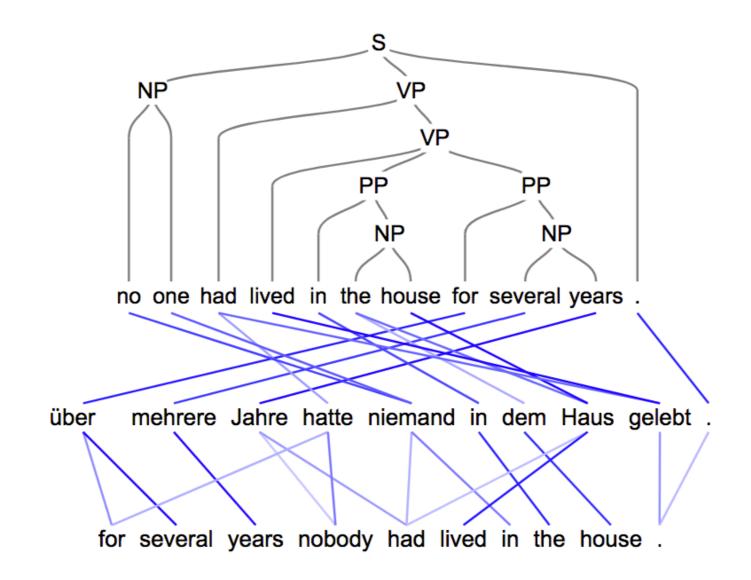
über mehrere Jahre hatte niemand in dem Haus gelebt .

Where Syntax Helps? Structure

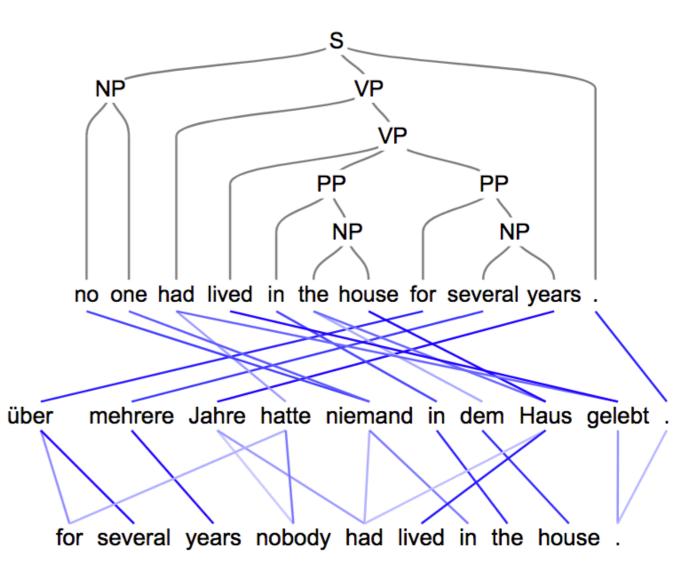
über mehrere Jahre hatte niemand in dem Haus gelebt .

for several years nobody had lived in the house .

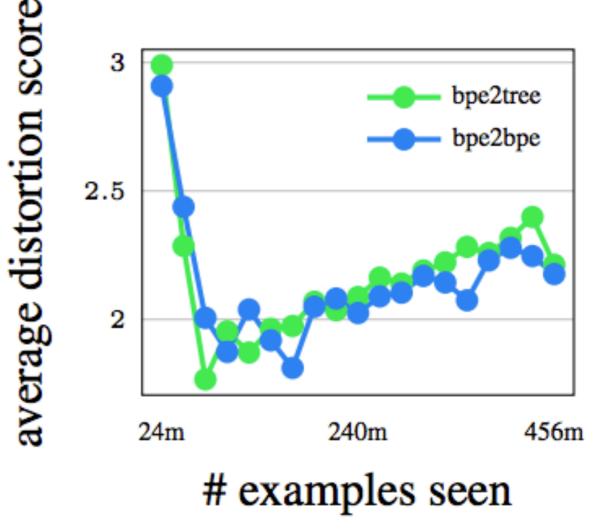
Where Syntax Helps? Structure



 German to English translation requires a significant amount of reordering during translation



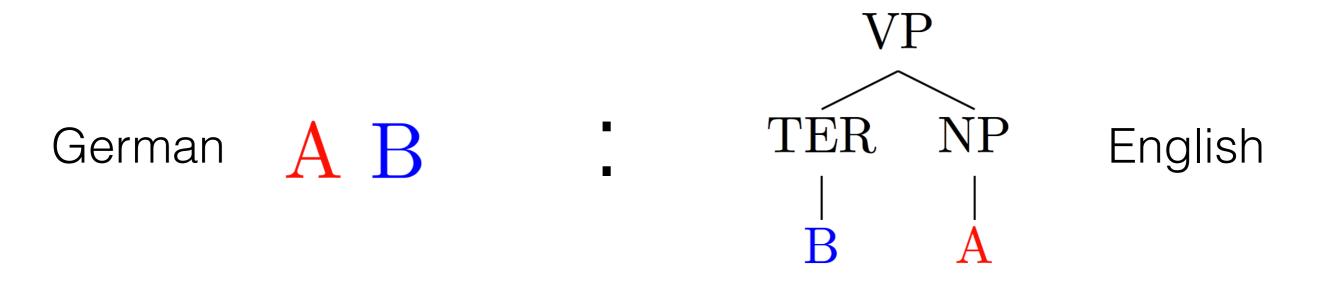
- German to English translation requires a significant amount of reordering during translation
- Quantifying reordering shows that the syntax-aware system performs more reordering during the training process



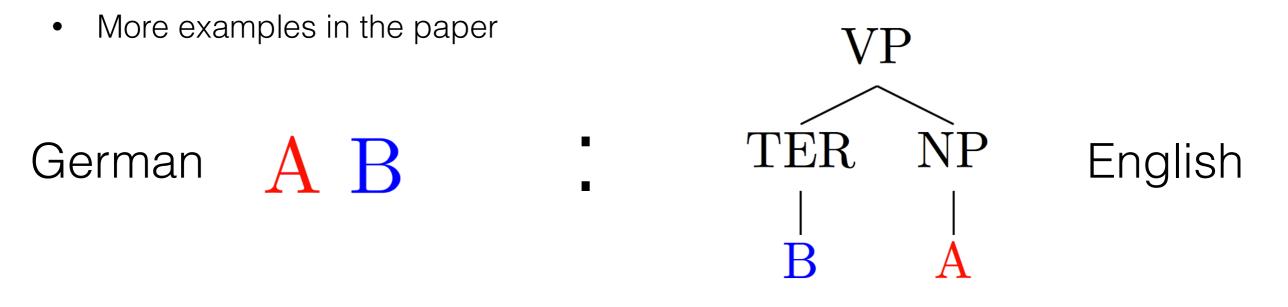
• We would like to **interpret** the increased reordering from a syntactic perspective

- We would like to **interpret** the increased reordering from a syntactic perspective
- We extract **GHKM rules** (Galley et al., 2004) from the dev set using the predicted trees and attention-induced alignments

- We would like to **interpret** the increased reordering from a syntactic perspective
- We extract **GHKM rules** (Galley et al., 2004) from the dev set using the predicted trees and attention-induced alignments
- The most common rules reveal linguistically sensible transformations, like moving the verb from the end of a German constituent to the beginning of the matching English one



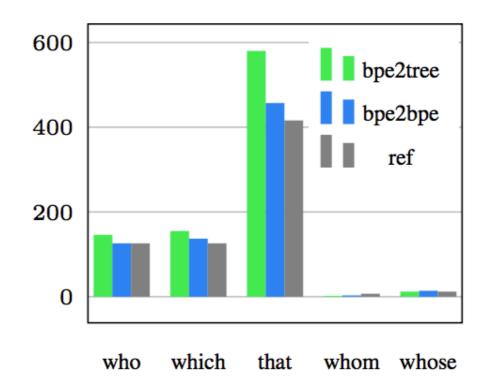
- We would like to **interpret** the increased reordering from a syntactic perspective
- We extract **GHKM rules** (Galley et al., 2004) from the dev set using the predicted trees and attention-induced alignments
- The most common rules reveal linguistically sensible transformations, like moving the verb from the end of a German constituent to the beginning of the matching English one



• A common linguistic structure is **relative constructions**, i.e. "The XXX **which** YYY", "A XXX **whose** YYY"...

- A common linguistic structure is **relative constructions**, i.e. "The XXX **which** YYY", "A XXX **whose** YYY"...
- The words that connect the clauses in such constructions are called **relative pronouns**, i.e. "who", "which", "whom"...

- A common linguistic structure is **relative constructions**, i.e. "The XXX **which** YYY", "A XXX **whose** YYY"...
- The words that connect the clauses in such constructions are called **relative pronouns**, i.e. "who", "which", "whom"...
- The syntax-aware system produced more relative pronouns due to the syntactic context



Source:

"Guangzhou, das in Deutschland auch Kanton genannt wird..."

Source:

"Guangzhou, das in Deutschland auch Kanton genannt wird..."

Reference:

"Guangzhou, which is also known as Canton in Germany..."

Source:

"Guangzhou, das in Deutschland auch Kanton genannt wird..."

Reference:

"Guangzhou, which is also known as Canton in Germany..."

Syntax-Agnostic:

"Guangzhou, also known in Germany, is one of...

Source:

"Guangzhou, das in Deutschland auch Kanton genannt wird..."

Reference:

"Guangzhou, which is also known as Canton in Germany..."

Syntax-Agnostic:

"Guangzhou, also known in Germany, is one of...

Syntax-Based:

"Guangzhou, which is also known as the canton in Germany,..."

Source:

"Zugleich droht der stark von internationalen Firmen abhängigen Region ein Imageschaden..."

Source:

"Zugleich droht der stark von internationalen Firmen abhängigen Region ein Imageschaden..."

Reference:

"At the same time, the image of the region, which is heavily reliant on international companies..."

Source:

"Zugleich droht der stark von internationalen Firmen abhängigen Region ein Imageschaden..."

Reference:

"At the same time, the image of the region, which is heavily reliant on international companies..."

Syntax-Agnostic:

"At the same time, the **region's heavily dependent region**..."

Source:

"Zugleich droht der stark von internationalen Firmen abhängigen Region ein Imageschaden..."

Reference:

"At the same time, the image of the region, which is heavily reliant on international companies..."

Syntax-Agnostic:

"At the same time, the **region's heavily dependent region**..."

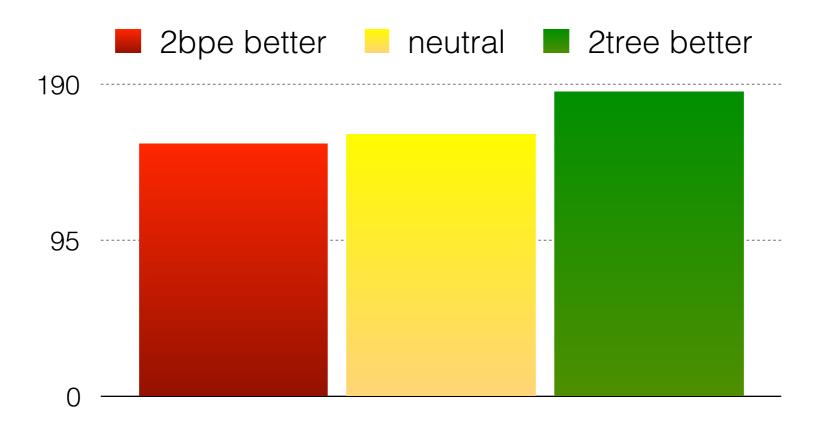
Syntax-Based:

"At the same time, the region, <u>which</u> is heavily dependent on international firms..."

• We performed a small-scale human-evaluation using mechanical turk on the first 500 sentences in newstest 2015

- We performed a small-scale human-evaluation using mechanical turk on the first 500 sentences in newstest 2015
- Two turkers per sentence

- We performed a small-scale human-evaluation using mechanical turk on the first 500 sentences in newstest 2015
- Two turkers per sentence
- The syntax-aware translations had an advantage over the baseline



Neural machine translation can clearly **benefit** from target-side syntax

Neural machine translation can clearly benefit from target-side syntax

Other recent work include:

• Eriguchi et al., 2017, Wu et al., 2017 (Dependency)

Neural machine translation can clearly benefit from target-side syntax

Other recent work include:

- Eriguchi et al., 2017, Wu et al., 2017 (Dependency)
- Nadejde et al., 2017 (CCG)

Neural machine translation can clearly benefit from target-side syntax

Other recent work include:

- Eriguchi et al., 2017, Wu et al., 2017 (Dependency)
- Nadejde et al., 2017 (CCG)
- A general approach can be easily incorporated into other neural language generation tasks like summarization, image caption generation...

Neural machine translation can clearly benefit from target-side syntax

Other recent work include:

- Eriguchi et al., 2017, Wu et al., 2017 (Dependency)
- Nadejde et al., 2017 (CCG)
- A general approach can be easily incorporated into other neural language generation tasks like summarization, image caption generation...
- Larger picture: don't throw away your linguistics! Neural systems
 can also leverage symbolic linguistic information

