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• Driving the current state-of-the-art (Sennrich et al., 2016) 

• Widely adopted by the industry
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Seq2Seq with Attention

f = argmax

f 0
p(f 0|e)

Bahdanau et al. (2015)
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Syntax was all the rage!
• The “previous” state-of-the-

art was syntax-based SMT

• i.e. systems that used 
linguistic information (usually 
represented as parse trees)

• “Beaten” by NMT in 2016

• Can we bring the benefits 
of syntax into the recent 
neural systems? From Rico Sennrich, “NMT: Breaking 

the Performance Plateau”, 2016
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Syntax: Constituency Structure
• A Constituency (a.k.a Phrase-Structure) grammar defines a set of 

rewrite rules which describe the structure of the language. 
• Groups words into larger units (constituents)
• Defines a hierarchy between constituents
• Draws relations between different constituents (words, phrases, 

clauses…)
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• Hints as to which word sequences belong together
• Helps in producing well structured sentences 
• Allows informed reordering decisions according to the 

syntactic structure
• Encourages long-distance dependencies when 

selecting translations

Why Syntax Can Help MT?
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Our Approach: String-to-Tree NMT

• Main idea: translate a source sentence into a linearized tree of the 
target sentence

• Inspired by works on RNN-based syntactic parsing (Vinyals et. al,                
2015, Choe & Charniak, 2016)

• Allows using the seq2seq framework as-is

source target



Experimental Details

• We used the Nematus toolkit (Sennrich et al. 2017) 

• Joint BPE segmentation (Sennrich et al. 2016) 

• For training, we parse the target side using the BLLIP parser 
(McClosky, Charniak and Johnson, 2006) 

• Requires some care about making BPE, Tokenization and Parser 
work together
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Experiments - Large Scale
• German to English, 4.5 million parallel training sentences from WMT16

• Train two NMT models using the same setup (same settings as the SOTA neural 
system in WMT16)

• syntax-aware (bpe2tree)

• syntax-agnostic baseline (bpe2bpe)

• The syntax-aware model performs better in terms of BLEU

Single  
Model

5 Model  
Ensemble



Experiments - Low Resource

• German/Russian/Czech to 
English - 180k-140k parallel 
training sentences (News 
Commentary v8) 

• The syntax-aware model 
performs better in terms of 
BLEU in all cases (12 
comparisons) 

• Up to 2+ BLEU improvement



Looking Beyond BLEU



Accurate Trees
• 99% of the predicted trees in the development set had valid bracketing 

• Eye-balling the predicted trees found them well-formed and following 
the syntax of English.
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Attending to Source Syntax
• We inspected the attention weights 

during the production of the tree’s 
opening brackets

• The model consistently attends to 
the main verb (“hatte") or to 
structural markers (question marks, 
hyphens…) in the source sentence

• Indicates the system implicitly 
learns source syntax to some 
extent (Shi, Padhi and Knight, 2016) 
and possibly plans the decoding 
accordingly
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Structure (I) - Reordering

• German to English translation 
requires a significant amount of 
reordering during translation

• Quantifying reordering shows 
that the syntax-aware system 
performs more reordering 
during the training process
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Structure (I) - Reordering
• We would like to interpret the increased reordering from a syntactic 

perspective 

• We extract GHKM rules (Galley et al., 2004) from the dev set using the 
predicted trees and attention-induced alignments

• The most common rules reveal linguistically sensible transformations, like 
moving the verb from the end of a German constituent to the beginning of 
the matching English one

• More examples in the paper

German English:
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Structure (II) - Relative Constructions

• A common linguistic structure is relative constructions, i.e. “The XXX which 
YYY”, “A XXX whose YYY”…

• The words that connect the clauses in such constructions are called relative 
pronouns, i.e. “who”, “which”, “whom”…

• The syntax-aware system produced more relative pronouns due to the 
syntactic context
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Syntax-Agnostic:

“Guangzhou, also known in Germany, is one of…

Syntax-Based:

“Guangzhou, which is also known as the canton in Germany,…”

Source:

“Guangzhou, das in Deutschland auch Kanton genannt wird…”

Reference:

“Guangzhou, which is also known as Canton in Germany…”
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Syntax-Agnostic:

“At the same time, the region's heavily dependent region…”

Syntax-Based:

“At the same time, the region, which is heavily dependent on 
international firms…”

Reference:

“At the same time, the image of the region, which is heavily reliant 
on international companies…”

Source:

“Zugleich droht der stark von internationalen Firmen abhängigen 
Region ein Imageschaden…”

Structure (II) - Relative Constructions
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Human Evaluation
• We performed a small-scale human-evaluation using mechanical 

turk on the first 500 sentences in newstest 2015

• Two turkers per sentence 

• The syntax-aware translations had an advantage over the baseline

0

95

190
2bpe better neutral 2tree better
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Conclusions
• Neural machine translation can clearly benefit from target-side 

syntax  
 
Other recent work include:
• Eriguchi et al., 2017, Wu et al., 2017 (Dependency)
• Nadejde et al., 2017 (CCG)

• A general approach - can be easily incorporated into other neural 
language generation tasks like summarization, image caption 
generation…

• Larger picture: don’t throw away your linguistics! Neural systems 
can also leverage symbolic linguistic information




