
Supplementary material

Steffen Eger†‡, Johannes Daxenberger†, Iryna Gurevych†‡

†Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, Technische Universitt Darmstadt

‡Ubiquitous Knowledge Processing Lab (UKP-DIPF)
German Institute for Educational Research and Educational Information

http://www.ukp.tu-darmstadt.de

1 Experimental Setup: Detailed
Descriptions

Pre-trained word embeddings: The sequence
tagging systems, including the multi-task learn-
ers, as well as the neural dependency parsers can
be initialized with pre-trained word embeddings.
For our experiments, we chose Glove embed-
dings (Pennington et al., 2014) of different sizes
(50, 100, and 200), the syntactic embeddings of
Komninos and Manandhar (2016), and the “struc-
tured skip n-gram” model of Ling et al. (2015).

Hyperparameter optimization: Hyperparam-
eter optimization is an art in itself and often makes
the difference between state-of-the-art results or
subpar performance (Wang et al., 2015). Find-
ing good parametrizations for neural networks—
such as size of the hidden units or number of
hidden layers—is often a very challenging prob-
lem. For the dependency parsers as well as for
the sequence taggers T in the STagT framing,
we performed random hyperparameter optimiza-
tion (Bergstra and Bengio, 2012), running systems
20 times with hyperparameters randomly chosen
within pre-defined ranges, and then averaged this
ensemble of 20 systems. These ranges were:1

• BiLSTM tagger in MTL setup: hidden layers
of size 150 and 50 dimensional embedding
layers (always using 50-dimensional Glove
embeddings); the system was trained for 15
iterations and the best model on development
set was chosen. All other hyperparameters at
their defaults.

• BiLSTM-CNN-CRF tagger: one hidden
layer of size in {125, 150, 200, 250}, ran-
domly drawn; training was stopped when per-
formance on development set did not im-

1In all cases for the neural networks, we chose a develop-
ment set of roughly 10% of the training set.

prove for 5 iterations. All other hyperpa-
rameters at their defaults. Embeddings ran-
domly chosen from the above-named pre-
trained word embeddings, with a preference
for 50 dimensional Glove embeddings.

For LSTM-ER, we ran the system with 50-
dimensional Glove embeddings, which yielded
better results than other embeddings we tried, and
no further tuning. This is because, as outlined,
the system already performs regularization tech-
niques such as entity pre-training and scheduled
sampling, which we did not implement for any of
the other models. In addition, the system took con-
siderably longer for training, which made it less
suitable for ensembling.

For the neural parsers, our chosen hyperparame-
ters can be read off from the accompanying scripts
on our github. We trained the non-neural parsers
with default hyperparameters.

Practical issues As outlined in the data section,
our data has a particular structure, but the models
we investigate are not guaranteed to yield outputs
that agree with these conditions (unlike, e.g., ILP
models where such constraints can be enforced).
For example, the taggers T in the STagT fram-
ing do not need to produce a tree structure, nor do
they need to produce legitimate B, I, O labeling—
e.g., in BIO labeling, an “I” may never follow an
“O”. Likewise, while the parsers are guaranteed
to output trees, the labeling they produce need not
be consistent with our data. For example, an ar-
gumentative token may be predicted to link to a
non-argumentative unit. Throughout, we observe
very few such violations—that is, the systems tend
to produce output consistent with the structures
on which they were trained. Still, for such viola-
tions, we implemented simple and innocuous post-
processing rules.

For the STagT systems, we corrected the fol-

http://www.ukp.tu-darmstadt.de

lowing:

(1) Invalid BIO structure, i.e., “I” follows “O”.

(2) A predicted component is not homogeneous:
for example, one token is predicted to link
to the following argument component, while
another token within the same component is
predicted to link to the preceding argument
component.

(3) A link goes ‘beyond’ the actual text, e.g.,
when a premise is predicted to link to another
component at ‘too large’ distance |d|.

In case (1), we corrected “I” to ”B”. In case (2), we
chose the majority labeling within the predicted
component. In case (3), we link the component to
the maximum permissible component; e.g., when
a premise links to a claim at distance 3, but the last
component in the document has distance 2, we link
the premise to this claim. We applied (1), (2), and
(3) in order. For STagBLCC this correction scheme
led to 61 out of 29537 tokens changing their la-
beling in the test data (0.20%) on essay level and
69 on the paragraph level. For STagBL there were
on average many more corrections. For example,
1373 (4.64%) tokens changed their labeling in the
Y-3:YC-3 setting described in Table 2. This is
understandable because a standard BiLSTM tag-
ger makes output predictions independently; thus,
more BIO, etc., violations can be expected.

For the parsers, we additionally corrected when
(4) they linked to a non-argumentative unit at in-
dex in. In this case, we would re-direct the faulty
link to the “closest” component in the vicinity of
in (measured in absolute distance). Again, we ap-
plied (1) to (4) in order. For the LSTM-Parser, this
led to 1224 corrections on token level (4.14%).
While this may seem as leading to considerable
improvements, this was actually not the case; most
of our ‘corrections’ did not improve the measures
reported—e.g., token level accuracy decreased,
from 57.17% to 55.68%. This indicates that a bet-
ter strategy might have been to re-name the non-
argumentative unit to an argumentative unit.

For LSTM-ER, when a source component is
predicted to relate to several targets (something
which is always incorrect for our data), we con-
nect the source to its closest target (and no other
targets), measured in absolute distance. This is
in agreement with the distributional properties of
d sketched in Figure 2, which prefers shorter dis-
tances over longer ones.

Links to code used

We used the following code for our experi-
ments: BLCC (https://github.com/
XuezheMax/LasagneNLP); MTL BL
(https://bitbucket.org/soegaard/
mtl-cnn/src); LSTM-ER (https://
github.com/tticoin/LSTM-ER); LSTM-
Parser (https://github.com/clab/
lstm-parser); Kiperwasser parser (https:
//github.com/elikip/bist-parser);
Mate parser (https://code.google.
com/archive/p/mate-tools/wikis/
ParserAndModels.wiki); MST parser
(http://www.seas.upenn.edu/
˜strctlrn/MSTParser/MSTParser.
html). The results for the ILP model were
provided to us by the first author of Stab and
Gurevych (2016).

2 Error Analysis

We conduct some more error analysis, focussing
on the three best models ILP, LSTM-ER and
STagBLCC.

Which component types are particularly diffi-
cult to detect? Table 1 investigates F1-scores
for component segmentation+classification. In
this case, there are seven classes: {B, I} ×
{C,MC,P} ∪ {O}. We observe that the O class is
particularly easy, as well as I-P. These two are the
most frequent labels in the data and are thus most
robustly estimated. While all systems are more
troubled predicting the beginning of a claim than
its continuation (this is often due to difficulty of
predicting the inclusion or omission of discourse
markers as illustrated above), major claims fol-
low a reverse trend. Further analysis reveals that
claims are often mistaken for premises and vice
versa, and major claims for claims or—to a lesser
degree—for premises. The mismatch between
claims and premises is sometimes due to mislead-
ing introductory phrases such as “Consequently ,”
which often imply conclusions (and hence claims),
but sometimes also give reasons—i.e., premises—
for other claims or premises.

We also note that the ILP model is substantially
worse than the two LSTMs in all cases except for
I-P on the component segmentation+classification
task.

A major source of errors for relations is that ei-
ther of their arguments (the two components) do
not match exactly or approximately. When they do

https://github.com/XuezheMax/LasagneNLP
https://github.com/XuezheMax/LasagneNLP
https://bitbucket.org/soegaard/mtl-cnn/src
https://bitbucket.org/soegaard/mtl-cnn/src
https://github.com/tticoin/LSTM-ER
https://github.com/tticoin/LSTM-ER
https://github.com/clab/lstm-parser
https://github.com/clab/lstm-parser
https://github.com/elikip/bist-parser
https://github.com/elikip/bist-parser
https://code.google.com/archive/p/mate-tools/wikis/ParserAndModels.wiki
https://code.google.com/archive/p/mate-tools/wikis/ParserAndModels.wiki
https://code.google.com/archive/p/mate-tools/wikis/ParserAndModels.wiki
http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html
http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html
http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html

Paragraph Essay
ILP LSTM-ER STagBLCC LSTM-ER STagBLCC

B-C 51.89 59.09 50.00 56.54 53.35
I-C 57.74 76.09 72.46 69.67 72.72
B-MC 76.56 80.64 78.26 77.15 73.80
I-MC 55.76 58.59 50.11 59.84 54.37
B-P 62.77 77.48 74.62 73.40 75.31
I-P 88.60 88.24 87.14 86.20 83.63
O 85.74 89.08 89.52 86.65 88.81

F1 68.56 75.62 71.76 72.93 72.66

Table 1: F1 scores in % for component segmentation+classification. Last row is macro-F1 score.

match, errors are mostly a mismatch between ac-
tual Attack/Against vs. predicted Support/For re-
lations. Support/For relations are the vast majority
in the PE data (94% and 82%, respectively). In
rare cases, the two arguments have been correctly
identified but their types are wrong (e.g. premise
and claim while the gold components are claim
and major claim, respectively).

References
James Bergstra and Yoshua Bengio. 2012. Random

search for hyper-parameter optimization. J. Mach.
Learn. Res. 13:281–305.

Alexandros Komninos and Suresh Manandhar. 2016.
Dependency based embeddings for sentence clas-
sification tasks. In NAACL HLT 2016, The 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, San Diego Califor-
nia, USA, June 12-17, 2016. pages 1490–1500.
http://aclweb.org/anthology/N/N16/N16-1175.pdf.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies. Association for
Computational Linguistics, Denver, Colorado, pages
1299–1304. http://www.aclweb.org/anthology/N15-
1142.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 1532–1543.
http://www.aclweb.org/anthology/D14-1162.

Isaac Persing and Vincent Ng. 2016. End-to-end ar-
gumentation mining in student essays. In Pro-
ceedings of the 2016 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-

tics, San Diego, California, pages 1384–1394.
http://www.aclweb.org/anthology/N16-1164.

Marina Sokolova and Guy Lapalme. 2009. A
systematic analysis of performance mea-
sures for classification tasks. Information
Processing & Management 45(4):427–437.
https://doi.org/10.1016/j.ipm.2009.03.002.

Christian Stab and Iryna Gurevych. 2016. Parsing ar-
gumentation structures in persuasive essays. arxiv
preprint https://arxiv.org/abs/1604.07370, under re-
view .

Lidan Wang, Minwei Feng, Bowen Zhou, Bing
Xiang, and Sridhar Mahadevan. 2015. Effi-
cient hyper-parameter optimization for NLP ap-
plications. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015. pages 2112–2117.
http://aclweb.org/anthology/D/D15/D15-1253.pdf.

Bishan Yang and Claire Cardie. 2013. Joint infer-
ence for fine-grained opinion extraction. In Pro-
ceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Sofia, Bulgaria, pages 1640–1649.
http://www.aclweb.org/anthology/P13-1161.

http://aclweb.org/anthology/N/N16/N16-1175.pdf
http://aclweb.org/anthology/N/N16/N16-1175.pdf
http://aclweb.org/anthology/N/N16/N16-1175.pdf
http://www.aclweb.org/anthology/N15-1142
http://www.aclweb.org/anthology/N15-1142
http://www.aclweb.org/anthology/N15-1142
http://www.aclweb.org/anthology/N15-1142
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/N16-1164
http://www.aclweb.org/anthology/N16-1164
http://www.aclweb.org/anthology/N16-1164
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ipm.2009.03.002
http://aclweb.org/anthology/D/D15/D15-1253.pdf
http://aclweb.org/anthology/D/D15/D15-1253.pdf
http://aclweb.org/anthology/D/D15/D15-1253.pdf
http://aclweb.org/anthology/D/D15/D15-1253.pdf
http://www.aclweb.org/anthology/P13-1161
http://www.aclweb.org/anthology/P13-1161
http://www.aclweb.org/anthology/P13-1161

