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A Supplemental Material

Here we provide a detailed system description1.
There are two scala packages. The dagger pack-
age contains the core imitation learning algorithm
implementation, and dagger-amr package con-
tains the implementation of the transition system
for AMR parsing. dagger-amr is dependent on
dagger.

A.1 AMR Fragments

Flanigan et al. (2014) and Wang et al. (2015b),
both use AMR fragments as their smallest unit,
which may consist of more than one AMR con-
cept. Instead we work with the individual AMR
nodes, and rely on Insert actions to learn how to
build common fragments, such as country names.
The main adaptations to the actions stem from this.
Wang et al. (2015a) later introduced an ‘Infer’ ac-
tion similar to our Insert action. Infer inserts an
AMR concept node above the current node as In-
sert does, but is restricted to nodes that occur out-
side of AMR ‘fragments’, which continue to be the
base building block. Their Merge action merges
σ0 and β0 into a composite node; this is not re-
quired with the retention of a 1:1 mapping be-
tween nodes and AMR concept. Figure 1 shows an
example for the fragment that represents “NATO”.
The internal structure to this fragment is invisible
to during learning or execution in Flanigan et al.
(2014; Wang et al. (2015b).

A.2 Action Space

Figure 2 shows a parse of a sentence fragment.
The current σ0 node is shown dashed and in red.
This illustrates that we stay in a uniform graph-
space throughout with the input dependency tree

1Code available at https://github.com/
hopshackle/dagger-AMR.
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Figure 1: Three-node fragment on the left is represented
by a single composite node on theright by (Flanigan et al.,
2014; Wang et al., 2015b). On termination of the algorithm,
the NATOCompositeNode is replaced with the three-node
fragment in the final output.
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Figure 2: Example parse from dependency tree to AMR of
the sentence fragment “. . . struck by cyber attacks in 2007.”



Action Name Param. Pre-conditions Outcome of action
NextEdge lr β non-empty Set label of edge (σ0, β0) to relation lr . Pop β0.
NextNode lc β empty Set concept of node σ0 to concept lc. Pop σ0, and re-initialise β.
Swap β non-empty Make β0 parent of σ0 (reverse edge) and its sub-graph. Pop β0 and

insert β0 as σ1.
ReplaceHead β non-empty Pop σ0 and delete it from the graph. Parents of σ0 become parents of

β0. Other children of σ0 become children of β0. Insert β0 at the head
of σ and re-initialise β.

Reattach κ β non-empty Pop β0 and delete edge (σ0, β0), and attach β0 as a child of the node κ.
If κ has already been popped from σ then re-insert it as σ1.

DeleteNode β empty; σ0 is leaf
node

Pop σ0 and delete it from the graph.

Insert lc Insert a new node δ with AMR concept lc as the parent of σ0, and insert
δ into σ.

InsertBelow lc σ0 is a leaf node Inserts a new node δ with AMR concept lc as the child of σ0.

Table 1: Action Space for the transition-based graph parsing algorithm

incrementally changes to the output AMR graph.
From the top the actions are
• Insert(date-entity)
• NextNode(WORD)
• NextEdge(year)
• second diagram
• NextNode(WORD)
• ReplaceHead to remove “in”
• third diagram
• NextNode(WORD)
• NextEdge(mod)
• Reattach to move “date-entity”
• fourth diagram
• NextNode(VERB)
• ReplaceHead to remove “by”
• NextEdge(ARG0)
• NextEdge(time)
• NextNode(strike-01)

The actions in the space are summarised in Ta-
ble 1, with details in the following sections.

A.3 NextNode, NextEdge and Delete

NextNode and NextEdge form the core of the al-
gorithm. We progress over all nodes from the
bottom of the tree up, first labelling the outgoing
edges with an AMR relation using NextEdge, and
then labelling the node with an AMR concept with
NextNode before moving to the next node in the σ
stack. Figure 3 shows an example of NextNode
and NextEdge actions, and these are unchanged
from Wang et al. (2015b). Each NextNode action
is parameterised with lc, the AMR concept to be
used as the label, and each NextEdge action is pa-
rameterised with lr, the AMR relation to be used.

Delete removes a leaf node completely from the
graph where the word does not map to any AMR
concept. An example is included in Figure 3.
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Figure 3: The three graphs show parts of successive states
starting from a dependency tree (on the left). The actions
from left to right are to Delete “The”; Label the “center” node
as center with NextNode.
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Figure 4: The two graphs continue from Figure 3. The actions
are to label the “nsubj” edge as ARG0 with NextEdge; Label
the “bolster” node as bolster-01 with NextNode



A.4 Swap, Reattach and ReplaceHead
These actions change the overall structure of the
graph, but always retain a tree structure provided
they start from a tree.
• Swap reverses the direction of an edge, so

that β0 becomes the parent of σ0 and its sub-
graph. An example is shown in Figure 5.
• Reattach takes the sub-graph starting at β0,

detaches it from σ0 and moves it to a new par-
ent κ. An example is shown in Figure 6.
• ReplaceHead removes a node from the graph

that is not a leaf node (in which case the
Delete action would be used). An example
is shown in Figure 7.
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Figure 5: Example of Swap action for ”...oppose South Korea
and Israel”. We need “and” to be the parent of South Korea
and Israel, and Swap moves it to be the parent of the whole
sub-graph.

Figure 6: Example of Reattach action. This follows on from
Figure 5, and we Reattach the “Israel” node to be a direct
child of “and”.
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Unlike Wang et al. (2015b) we do not parame-
terise Swap or Reattach actions with a relation la-
bel. We leave that decision to a later NextEdge
action. We permit a Reattach action to use pa-
rameter κ equal to any node within a distance of
six edges from σ0, excluding any node in the sub-
graph of β0 to avoid disconnecting the graph and
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Figure 7: Example of ReplaceHead. “in” is not in the final
AMR graph, and needs to be removed. It is not a leaf node,
so we use ReplaceHead to merge it into “London”.

creating loops. This is slightly more than Wang et
al. use, and we found the increase helpful to cope
with the larger graphs we have given the avoidance
of ‘fragments’ that merge multiple AMR Concept
nodes in the parsed graph.

Our ReplaceHead covers two distinct actions
in Wang et al. (2015b); ReplaceHead and Merge.
The Merge action merges σ0 and β0 into a com-
posite node, that keeps all the words represented
in the final AMR graph. This is not required in
our approach as we do not have composite nodes
and retain a 1:1 mapping between nodes and AMR
concept.

A.5 Insert and InsertBelow
The Insert/InsertBelow actions insert new node as
a parent/child of the current σ0. The action is pa-
rameterised with lc, the AMR concept for the in-
serted node. Neither action exists in Wang et al.
(2015b), while Wang et al. (2015a) introduces an
‘Infer’ action that is equivalent to Insert. When
a node is inserted, we set the lemma equal to the
AMR concept, to be used in features for future ac-
tions. An example is shown in Figure 8.
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Figure 8: Example of Insert. We insert a new node with a
label of military to create the full AMR representation of
“NATO”.



A.6 Reentrance

Wang et al. (2015b) have a Reentrance action that
creates a new edge between the current node σ0,
and another nearby node κ. Since none of the
other actions will convert a tree into a non-tree,
the exclusion of Reentrance means that the output
AMR graph is always a tree. Despite this strong
restriction, we found the accuracy of results was
better if Reentrance was excluded.

A.7 Additional action constraints

In our approach T is theoretically unbounded and
the algorithm could Insert, or Reattach ad infini-
tum.

We impose constraints to prevent these situa-
tions. Specifically:
• A Swap action cannot be applied to a previ-

ously Swapped edge
• Once a node has been moved by Reattach,

then it cannot be Reattached again
• An Insert action can only be executed once

with any given node as σ0
• An Insert action is not permissible if it would

insert an AMR concept that is already in use
as any of the parent, children, grand-parents
or grand-children of σ0

We only allow actions which preserve acyclic-
ity, but do not prevent duplication of argument re-
lations so that a concept could have two outgoing
ARG1 edges even if this is impossible linguisti-
cally. We start with a fully connected graph (the
dependency tree), and preserve full connectivity as
none of the actions will disconnect a graph.

A.8 The Expert Policy

The expert policy used in training applies heuris-
tic rules to determine the next action from a given
state. It uses the training alignments to construct a
mapping between nodes in the dependency tree,
and nodes in the target AMR. Any unmapped
nodes in the dependency tree will be deleted by
the expert, and any unmapped nodes in the AMR
graph will be inserted. All our experiments use
alignments from JAMR (Flanigan et al., 2014).
Even if these are not ideal, we hope to be able
to learn better implicit alignments. This is an ad-
vantage of joint training in a single phase, and not
having a separate phase for concept identification
prior to graph construction.

Wang et al. (2015b) use all AMR concepts and
relations that appear in the training set as possible

parameters (lc and lr) if they appear in any sen-
tence containing the same lemma as σ0 and β0. We
reduce this to just concepts that have been aligned
to the current lemma in the training data.

We initially run the expert policy over the train-
ing set, and track the AMR concept assigned for
each lemma. These provide the possible lc that
will be used for NextNode actions. Similarly we
track the lemmas at head and tail of each expert-
assigned AMR relation, and compile possible lr
from these.

This means that AMR concepts/relations will
never be considered during test if they were not
aligned to that lemma in the training data. To relax
this restriction we also allow lc to take the values
WORD, LEMMA, VERB, which respectively use the
actual word, lemma, or the lemma concatenated
with ‘-01’ as the AMR concept. This is inspired
by Werling et al. (2015), who use a similar set of
actions in a concept identification phase. For the lc
parameters on Insert (InsertBelow) actions, we use
all AMR concepts that the expert inserted above
(below) any node in the training set with the same
lemma as σ0.

The expert policy used in training applies a
number of heuristics to determine the next action
from a given state. It uses the alignments from
the JAMR aligner to construct a mapping between
nodes in the starting dependency tree, and nodes
in the target AMR graph. Any unmapped nodes in
the dependency tree will then need to be deleted by
the expert, and any unmapped nodes in the AMR
graph will need to be inserted. The JAMR aligner
maps a sequence of words to an AMR graph frag-
ment, so there is an additional alignment stage lo-
cal to the expert that maps individual nodes in the
AMR fragment to words in the sequence. This is
done by calculating the Jaro string distance (Jaro,
1989) between each pairing of AMR concept and
word, and then greedily assigning pairs starting
with the best match.

From any given state, the expert takes an action
from the following rules listed in priority order. In
these rules, ‘AMR’ refers to the Gold AMR graph
that the expert is aiming to produce. ‘Current’
refers to the state of the graph during processing.

1. If both σ0 and β0 map to AMR nodes, and
there is an AMR relation from β0 to any an-
cestor of σ0 then apply Swap to reverse the
arc and put the old β0 node above σ0

2. If the current node, σ0, is mapped to an AMR



node, and this AMR node has an unmapped
AMR node as parent, then Insert a new node
and map this to the unmapped parent AMR
node

3. If σ0 is mapped to an AMR node, and this
node has an child leaf node that is not yet
mapped to any node in the graph, then In-
sertBelow to create this node, and update the
mapping

4. If β is empty (i.e. all outgoing edges from
σ0 have already been labelled), and σ0 has a
mapping to an AMR node, then label σ0 with
the appropriate concept using NextNode

5. If σ0 is a leaf node and has no mapping to an
AMR node, then Delete it

6. If σ0 has no mapping to an AMR node, but
β0 does, then apply ReplaceHead to merge
σ0 into β0

7. If both σ0 and β0 map to AMR nodes, and
there is an AMR relation σ0 → β0, then label
with the appropriate relation using NextEdge

8. If both σ0 and β0 map to AMR nodes, and
there is an AMR relation β0 → σ0 then apply
Swap to reverse this arc

9. If β0 is mapped to an AMR node with a par-
ent that is not mapped to σ0, then Reattach β0
to the correct node according to the mapping

10. If β is not empty, then apply NextEdge to la-
bel the relation using the current label on the
edge (σ0 → β0)]

11. Use NextNode to label the node using an
AMR concept equal to the word of the node

The last two actions ensure an action is always
possible and may result in relations and concepts
in the final AMR graph that are not in the AMR
vocabulary. For example an edge might be la-
belled nsubj from the starting dependency label.
This will simply reduce the final F-Score.

The expert and the AMR aligner obtain an F-
Score of 0.94 on the training data.

A.9 Features

Features used are detailed in Tables 2 and 3. All
are 0-1 indicator functions. Comparator and Nega-
tion features are inspired by some of the JAMR
pre-processing steps (Flanigan et al., 2014).

The key differences to Wang et al. (2015b) are
the inclusion of the brown, POSpath, NERpath,
prefix and suffix feature types. Wang et al. (2015a)
does include Brown cluster information in the fea-
ture set, as well as other features from a semantic

Table 2: Features used by context.

Context Features
σ0 lemma, comparator, negation, dl, ner,

POS, inserted, prefix, suffix, brown,
deleted, lemma-dl

σ0P inserted, lemma, brown
σ0C label, ner, label-brown
β0 inserted, POS, lemma, brown, ner, dl,

prefix, suffix, merged
κ ner, POS, lemma, brown, label
σ0 → β0 label, path, lemma-path-lemma,

POSpath, inserted-inserted, lemma-
POS, POS-lemma, dl-lemma, lemma-dl,
lemma-label, label-lemma, ner-ner,
distance

β0 → κ path, lemma-path-lemma, NERpath,
POSpath, distance, lemma-POS, dl-
lemma, ner-ner

σ0 → κ distance, lemma-path-lemma, brown-
brown, NERpath, POSpath, lemma-dl,
lemma-label

σ0P → σ0 label, POS-lemma, dl-lemma, ner-ner
σ0PP →
σ0P → σ0

lemma-lemma-lemma

σ0 → σ0C POS-lemma, lemma-POS, dl-lemma,
ner-ner

Table 3: Feature description.

Type Features
comparator word terminates in ‘er’ or ‘est’
negation word starts with ‘un’, ‘in’, ‘il’ or ‘anti’
inserted node was inserted by the parser
dl dependency label in the original depen-

dency tree
ner named entity tag from Stanford parser in

pre-processing
POS part-of-speech tag from pre-processing
prefix string before hyphen if word is hyphen-

ated
suffix string after hyphen is word is hyphenated
brown Cuts at 4, 6, 10 and 20 from 320-class

Brown Clusters.2

deleted lemma of any child node previously
deleted by the parser

merged lemma of any node merged into this node
by a ReplaceHead action

distance distance between the tokens in the sen-
tence

path concatenation of lemmas and dls between
the tokens in the starting dependency tree

POSpath concatenation of POS tags between the
tokens in the starting dependency tree

NERpath concatenation of NER tags between the
tokens in the starting dependency tree



roll labeller and co-reference resolver.

A.10 Pre-processing and initialisation
We undertake some pre-processing on the English
sentences, primarily to deal efficiently with dates
and numbers. The pre-processing steps are:
• Insert spaces around any ‘/’ characters to en-

sure strings like ‘and/or’ are tokenised as two
words. Hyphenated words left as single to-
kens.
• Pass the full sentence through the Stanford

Dependency Parser to construct a depen-
dency tree (Manning et al., 2014), including
annotation on parts-of-speech, named entity
recognition, lemmas and dependency labels
(all used as Features in Section 2). We use
v3.3.1 of the Stanford Parser.
• Any tokens representing punctuation marks

are then removed. During cross-validation,
it was determined that leaving punctuation
marks in the starting dependency tree did not
improve performance.
• Match any month name (‘January’, ‘Jan’,

‘March’ etc.) and replace it with the month
number mm.
• Match any numeric strings of format
ddmmyy or dd-mm-yy and change these
to dd mm yyyy to provide a set of three
numeric tokens from which the AMR
date-entity structure can be learned.
• Match any number string between ‘one’ and

‘twelve’ and replace it with the relevant nu-
meric digits.
• Match any string of ‘hundred’, ‘thousand’,

‘million’ or ‘billion’ immediately preceded
by a number, and replace both word tokens
with the numeric amount - e.g. “2 thousand”
becomes “2000”.

In AMR the convention is that any amount is ex-
pressed in digits, regardless of the form in the text,
and this pre-processing enables these amounts to
be used directly in the AMR graph.

A.11 Command line
For the DAGGER experiments reported in section
6 of the main paper, the command line used was:

java -Xms1g -Xmx22g

-jar ../amr-dagger-J7.jar

--dagger.output.path ./

--dagger.iterations 10 --train.data

../amr-1.0-proxy-train.txt

--validation.data

../amr-1.0-proxy-dev.txt --num.cores

4 --algorithm Dagger --policy.decay

0.3 --initialExpertProb 1.0 --samples

1 --oracleLoss true --maxActions

300 --aligner JAMR --classifier AROW

--arow.smoothing 100 --WXfeatures PCKX

--reentrance false --reducedActions

false --punctuation false

--arow.iterations 5 --preferKnown false

--fileCache true --instanceThreshold 100

--minTrainingSize 120 --maxTrainingSize

120 --startingClassifier false

--wikification false --average

true --previousTrainingIter 2

--logTrainingStats false --brownCluster

../Brown320.txt --textEncoding UTF-8

The parameters --classifier,
--arow.smoothing,
--instanceThreshold were varied,
with respective values of {AROW, PA,
PERCEPTRON}, {10, 100, 1000}, {1,
100}. --instanceThreshold controls the
α-bound.

For the V-DAGGER experiments with tar-
geted exploration reported in section 6 of the
main paper, the command line used was: java

-Xms1g -Xmx48g -jar ../amr-dagger-J7.jar

--dagger.output.path ./

--dagger.iterations 20 --train.data

../amr-1.0-proxy-train.txt

--validation.data

../amr-1.0-proxy-dev.txt --test.data

../amr-1.0-proxy-test.txt --lossFunction

NaivePenaltyAbs --num.cores 8

--algorithm Dagger --policy.decay

0.3 --initialExpertProb 1.0 --samples

1 --oracleLoss false --maxActions

300 --aligner JAMR --arow.smoothing

1000 --WXfeatures PCKX --reentrance

false --reducedActions true

--punctuation false --arow.iterations

5 --preferKnown false --fileCache true

--instanceThreshold 1 --threshold 0.10

--minTrainingSize 120 --maxTrainingSize

120 --startingClassifier false

--wikification false --average

true --previousTrainingIter 2

--rolloutLimit 10 --logTrainingStats

false --brownCluster ../Brown320.txt

--textEncoding UTF-8



The parameter --threshold was varied,
with respective values of {0.02, 0.05,
0.10, 0.20}. Focused costing is switched
on with the additional parameter setting
--expertHorizon true. The parame-
ters for focused costing are then set with, using
the 5/5 setting as an example, --expertAfter
5 --expertHorizonInc 5.
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