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1 Decoding for Individual Models

Under the independence hypothesis, the predicate-centric and argument-centric
models can be seen as some kind of Markov models. We can use dynamic pro-
gramming (DP) to decode the first two models. Here we illustrate the decoding
method for the second order models, which can be easily extended for the kth
order models. Given a sentence, our goal is to find a graph that maximizes

f(y) =
n∑

i=1

fi(yi)

=

n∑
i=1

m+1∑
j=1

θ>Φ(aj−1, aj , i,w,p).

This equals to finding the optimal yi for each i. Let L be the length of the sentence.
To find the optimal yi, we can use a two dimensional array s[1 : L+ 1][1 : L+ 1]
as the DP table. s[l][j] is the maximum score of the sequence a0, · · · , al = j. The
initialization is

s[1][j] = θ>Φ(0, j, i, w),

and the functional equation is

s[l][j] = max
l−1≤k≤j−1

s[l − 1][k] + θ>Φ(k, j, i, w).

After the table is filled, the number of 1’s of the optimal yi is

arg max
1≤l≤L+1

s[l][L+ 1].

We can find the optimal yi by maintaining a backtracing table during DP.
The decoding method for second order model cost time of O(n3) where n is

the length of the sentence. For kth order model, it will cost O(nk+1).
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The decoding for the tree approximation model is simple. We train a tree parser
with a converted tree corpus, and after the parser give the parse tree of a sentence,
we convert the tree back to graph. The tree parser should and find a tree t = t(i, j)
to maximize the score. Then we examine the labels on each arc to convert the tree
back to graph.

2 Feature Templates

We implemented a perceptron with hash kernel (Bohnet, 2010), which allows us to
extract a large amount of features. This technique saves us much memory and allow
us to use rich contextual features for disambiguation. We also extract features from
syntactic unlabeled dependency trees. The feature functions we use are shown in
Table 1. Let d(i, j) = i− j be the distance between i and j; o(i, j, k) ∈ {i < k <
j, k < i < j, k < j < i} be the relative order of i, j, k (j > k); POSi→j be the
POS-tag sequence along the path from i to j in the syntax tree; and Pi→j be the
reduced POS-tag (here we mean the first letter of the POS-tag) sequence.

For predicate-centric model, all feature templates (i.e. Φp(prev, cur, i,w,p))
include:

• guni(i,w,p, d(i, cur));

• guni(i,w,p, o(i, cur, prev));

• guni(cur,w,p, d(i, cur));

• guni(cur,w,p, o(i, cur, prev));

• guni(prev,w,p, d(cur, prev));

• guni(prev,w,p, o(i, cur, prev));

• fbi(wi, pi, wcur, pcur, d(i, cur));

• fbi(wi, pi, wcur, pcur, o(i, cur, prev));

• fbi(wprev, pprev, wcur, pcur, d(cur, prev));

• fbi(wprev, pprev, wcur, pcur, o(i, cur, prev));

• gbi(i, cur,w,p, d(i, cur));

• gbi(i, cur,w,p, o(i, cur, prev));

• ftri(wprev, pprev, pcur, pcur, wi, pi, o(i, cur, prev));
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funi(wi, pi, d):
wi ◦ d; pi ◦ d; wi ◦ pi ◦ d
fbi(wi, pi, wj , pj , d):
wi ◦pi ◦wj ◦pj ◦d; wi ◦pi ◦wj ◦d; wi ◦pi ◦pj ◦d; wi ◦wj ◦pj ◦d; pi ◦wj ◦pj ◦d;
wi ◦ wj ◦ d; pi ◦ pj ◦ d
f′bi(wi, pi, wj , pj , d):
wi ◦ pi ◦ wj ◦ pj ◦ d; wi ◦ pi ◦ pj ◦ d; pi ◦ wj ◦ pj ◦ d; pi ◦ pj ◦ d
ftri(wi, pi, wj , pj , wk, pk, d):
wi ◦ pi ◦wj ◦ pj ◦wk ◦ pk ◦ d; wi ◦wj ◦wk ◦ d; wi ◦wj ◦ pk ◦ d; wi ◦ pj ◦wk ◦ d;
wi ◦ pj ◦ pk ◦ d; pi ◦wj ◦wk ◦ d; pi ◦wj ◦ pk ◦ d; pi ◦ pj ◦wk ◦ d; pi ◦ pj ◦ pk ◦ d
fpath(wi, pi, wj , pj , P, d):
P ; P ◦ d; wi ◦ pi ◦ wj ◦ pj ◦ P ◦ d; wi ◦ pi ◦ wj ◦ P ◦ d; wi ◦ pi ◦ pj ◦ P ◦ d;
wi ◦ wj ◦ pj ◦ P ◦ d; pi ◦ wj ◦ pj ◦ P ◦ d; wi ◦ wj ◦ P ◦ d; pi ◦ pj ◦ P ◦ d
guni(i,w,p, d):
funi(wi, pi, d); funi(wi−1, pi−1, d); funi(wi+1, pi+1, d);
gbi(i, j,w,p, d):
f′bi(wi, pi, wi−1, pi−1, d); f′bi(wi, pi, wi+1, pi+1, d); f′bi(wi, pi, wj−1, pj−1, d);
f′bi(wi, pi, wj+1, pj+1, d); f′bi(wj , pj , wj−1, pj−1, d); f′bi(wj , pj , wj+1, pj+1, d);
f′bi(wj , pj , wi−1, pi−1, d); f′bi(wj , pj , wi+1, pi+1, d);
gtri(i, j,w,p, d):
ftri(wi, pi, wi−1, pi−1, wj , pj , d); ftri(wi, pi, wi+1, pi+1, wj , pj , d);
ftri(wi, pi, wj−1, pj−1, wj , pj , d); ftri(wi, pi, wj+1, pj+1, wj , pj , d);

Table 1: Basic feature functions.

• gtri(i, cur,w,p, o(i, cur, prev));

• gtri(prev, cur,w,p, o(i, cur, prev));

• fpath(wi, pi, wcur, pcur, POSi→cur, d(i, cur));

• fpath(wi, pi, wcur, pcur, Pi→cur, d(i, cur)).

The Φa we use is the same as Φp described above. The Φt we use is the same
as (Bohnet, 2010).
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