
Supplementary Material for the Paper:
Environment-Driven Lexicon Induction for High-Level Instructions

Dipendra K. Misra∗ Kejia Tao∗ Percy Liang∗∗ Ashutosh Saxena∗
dkm@cs.cornell.edu kt454@cornell.edu pliang@cs.stanford.edu asaxena@cs.cornell.edu

∗ Department of Computer Science, Cornell University
∗∗Department of Computer Science, Stanford University

1 Dataset: Samples and Challenges

As described in the main paper, we collected a
dataset D = (x(n), e(n), a(n), π(n))500n=1.
Environment Complexity. Our environments are
3D scenarios consisting of complex objects such
as fridge, microwave and television with many
states. These objects can be in different spatial re-
lations with respect to other objects. For example,
“bag of chips” can be found behind the television.
Figure 1 shows some sample environments from
our dataset. For example, an object of category
television consists of 6 channels, volume level and
power status. An object can have different values
of states in different environment and different en-
vironment consists of different set of objects and
their placement. For example, television might be
powered on in one environment and closed in an-
other, microwave might have an object inside it or
not in different environment, etc.

Moreover, there are often more than one object
of the same category. For example, our environ-
ment typically have two books, five couches, four
pillows etc. Objects of the same category can
have different appearance. For example, a book
can have the cover of a math book or a Guinness
book of world record; resulting in complex object
descriptions such as in “throw the sticky stuff
in the bowl”. They can also have the same
appearance making people use spatial relations or
other means while describing them such as in “get
me the cup next to the microwave”. This dataset
is significantly more challenging compared to the
2D navigation dataset or GUI actions in windows
dataset considered earlier.

Task Complexity. In this paper, we consider tasks
with high level objective such as clean the room,
prepare the room for movie night etc. compared to
navigation or simple manipulations tasks involv-
ing picking and placing objects. This results in
extremely free-form text such as shown below:

• “Turn on xbox. Take Far Cry Game CD and
put in xbox by pressig eject to open drive.
Throw out beer, coke, and sketchy stuff in
bowl. Take pillows from shelf and distribute
among couches .”

• “Boil some water and make some coffee.
Find a white bowl. Take ice cream out of the
freezer. Put coffee into the white bowl, then
put two scoops of ice cream over that . Fi-
nally, take the syrup on the counter and driz-
zle it over the ice cream.”

• “If anything is disposable and used, put it
in the trash bag. If it is not disposable and
on the floor, put it on the table nearest any
items associated with it. If it is not disposable
and on the floor, put it on the table nearest
any items associated with it. If it is not dis-
posable and on the floor, put it on the table
nearest any items associated with it. If a not
disposable item contains only disposable ob-
jects, dump them into the trash bag, and treat
the object like it was on the floor. Remove the
trash bag from the scenario.”

• “Make some coffee. Make some eggs on the
stove and then put them on a plate and serve
the eggs and coffee to me ”

• “Take Book of Records and place on table
with brown book. The TV is already turned
off .Throw out open beer and coke. Chips are
good.”

• “Dump the coffee in the mug in the sink, put
all perishable items in the refrigerator, put all
the dishes, utensils, and pots in the sink.”

• “Turn TV on with remote and find movie (Lin-
coln) on with remote and find movie (Lin-
coln) . Take bag of chips and place on table.
Take pillow from shelf and place on a sofa.
Throw away beer and soda, and place Book
of Records on shelf with brown book.”

Figure 1: Sample of 3D Environments that we consider. Environments consists of several objects, each
object can have several states. Different environment have different set of objects with different config-
uration. There can be more than one objects of the same category.

• “Mix syrup and water to make a drink. You
can get water by rotating the tab near sink.
Use kettle to boil water and mix heated water
with instantRamen.”

we refer the readers to the full dataset for more
examples.
Noise in the dataset. Our dataset was collected
from non-expert users including the action se-
quences. Therefore, our dataset had considerable
noise as is also visible from the examples above.
The noise included spelling and grammar errors in
the text, text that is asking the robot to do things
which it cannot do such as moving the chairs,
noise in the action sequences and noise in aligning
parts of action sequences and the text segments.

We use a set of rules to remove noise from the
dataset, such as removing cyclic patterns in the ac-
tion sequence. This often happened when users
tried to give a demonstration to the robot such as
keeping a mug inside the microwave, but made an
error and hence repeated the actions. We want to
emphasize here that, the average length of 21.5 ac-
tions for the action sequences in the dataset was
derived after removing this noise.

Out of the 500 points that we collected, we fur-
ther removed 31 points consisting of action se-
quences of length less than 2.

2 Examples of Planning and Simulation
We use a planner and a simulator which allows
us to use post-conditions in defining our log-
ical forms. In order to perform planning and
simulation— we encode the domain knowledge in
STRIPS planning format. This defines precondi-
tions and effect of action on the environment. An
example is given below:

(:action release :parameters (o)
:precondition (grasping robot o)

:effect (not (grasping robot o)))
This STRIPS program defines the action release

which takes an object o as the argument. The
precondition of this action is that the robot must
be grasping the object o and the effect is that robot
releases the object o.

3 Mapping Object Descriptions

Given an object description ω and a set of physical
objects {oj}mj=1; we want to find the correlation
ρ(ω, oj) ∈ [0, 1] of how well does the description
ω describes the object oj . When the description
is not a pronoun, we take the following approach.
We initialize ∀j ρ(ω, oj) = 0 and then try the fol-
lowing rules in the given order, stopping after the
first match:

• category matching: if there exists a set of ob-
jects {o′j} containing part of the description in
its name then we define ∀jρ(ω, o′j) = 1.
• containment (metonymy): for every object oj ; if

the main noun in ω matches the state-name of a
state of oj which has value True then we define
ρ(ω, oj) = 1.
• wordnet similarity: for every object oj we find
ρ(ω, oj) using a modified Lesk algorithm based
on WordNet. If a similarity score greater than
0.85 is found then we return.
• domain specific references: We use giza-pp al-

gorithm to learn translation probabilities be-
tween text and corresponding action sequences,
using the training data. This gives us a prob-
ability table T [words,object-name] of words in
text and object name in the sequence. We
then initialize ρ(ω, oj) by averaging the value of
T [w, oj .name] for every word w in ω.

4 Manual Rules for Parsing Conditions
As explained in the paper, we parse conditional
expressions into their meaning representations us-
ing a set of rules. This was possible and motivated
both by the fact that the conditional expressions
in our dataset are easy and because meaning
representations of conditional expressions are
not observed in the dataset (which only contains
actions corresponding to frame nodes). We
parse conditional expressions using the following
deterministic rules.
string which is a noun or a pronoun→ object
string representing a state-name→ statename
string representing a spatial relation→ relation
“minute”|“min”|“hour”|“sec”|“seconds”→ time-unit
object statename→ state(object, statename)
string1 relation string2→ relation(string1, string2)
digit time-unit→ time(digit, time-unit)
for/when/after/until state(object, statename)→

for/when/after/until(state(object, statename))
for/after/until time(digit,unit)→

for/after/until(time(digit,unit))
if state(string1, string2)→ if(state(string1, string2))

Each word in the text can further be ignored i.e.
mapped to ε. These rules are simple enough to be
parsed in a bottom up fashion starting with words.
Example: “for 3 minutes” is parsed as:
minutes→ time-unit:min
3 time-unit:min→ time(digit:3,time-unit:min)
for time(3,time-unit:min)→ for(time(digit:3,time-unit:min))

For “if” condition, which has a true and false
branch; we evaluate the condition using the start-
ing environment. In case of a parsing failure, we
always return true.

5 Feature Equation
We use the following features φ(ci, zi−1, zi, ei)
briefly described in the paper. The logical form is
given by zi = ([ν ⇒ (λ~v.S, ξ)], ξi). Here ξi, ξ are
mappings of the variable ~v of the parametrized
post-condition S. Let ~v have m variables and
ξ(vj) represents the object in ei, to which the
variable vj is mapped using ξ. Further the
post-condition fi is given by fi = (λ~v.S)(ξi):

• Language and Logical Form: There are two fea-
tures of this type:

fle =
1

m

m∑
j=1

max
ω

ρ(ω, ξi(vj))

frecall =
1

|ω ∈ ci|
∑
ω∈ci

max
j
ρ(ω, ξi(vj))

where ρ is the object description correlation
score(see paper). For the fLE feature, we also
consider the previous clause ci−1 in the compu-
tation of maxω ρ(ω, ξi(vj)).
• Logical Form: We prefer the post-conditions

which have high environment priors and are
therefore likely to occur again. Let post-
condition fi = ∧lfil = fi1 ∧ fi2 · · · fip
consists of p atomic-predicates (or their nega-
tions) given by fil. Also let, pm(∧lfil) be
the parametrized version of the post-condition
∧lfil created by replacing each unique object
by a unique variable. Example, the post-
condition on(cup2, bowl3)∧state(cup2, water)
is parametrized to on(v1, v2)∧state(v1, water).
We capture this property by 4t features where
t denotes the maximum number of predicates
that we consider simultaneously for creating the
probability tables. In our experiments reported
in the paper we took t = 2. These features are
given below. The notation 〈Vi〉i∈C stands for av-
erage of quantity Vi given by 1

|C|
∑

i Vi

for t = 1

f
(1)
e prior =

〈
P

(1)
e prior(fil)

〉
1≤l≤p

f
(1)
a prior =

〈
P

(1)
a prior(pm(fil))

〉
1≤l≤p

f
(1)
ev prior =

〈
P

(1)
ev prior(fil | ν)

〉
1≤l≤p

f
(1)
av prior =

〈
P

(1)
av prior(pm(fil) | ν)

〉
1≤l≤p

for t = 2

f
(2)
e prior =

〈
P

(2)
e prior(fil1 ∧ fil2)

〉
1≤l1<l2≤p

f
(2)
a prior =

〈
P

(2)
a prior(pm(fil1 ∧ fil2))

〉
1≤l1<l2≤p

f
(2)
ev prior =

〈
P

(2)
ev prior(fil1 ∧ fil2 | ν)

〉
1≤l1<l2≤p

f
(2)
av prior =

〈
P

(2)
av prior(pm(fil1 ∧ fil2) | ν)

〉
1≤l1<l2≤p

The prior tables P (t)
r (|.) are created using the

training data.
• Logical Form and Environment: As explained in

the paper, we introduce the anchored mapping ξ
to help in dealing with ellipsis. Therefore, we
add a feature that maximizes the similarity be-
tween the anchored mapping ξ(vj) of a variable
vj and the new mapping ξi(vj). This is given by:

fee =
1

m

m∑
j=1

∆(ξ(vj), ξi(vj)))

where ∆ is a similarity score between objects
ξ(vj) and ξi(vj). We compute this by taking
∆(o1, o2) = 0.5 1{o1.category = o2.category}

+ 0.5 fraction of common states value pairs.
• Relationship Features: Given all (ω1, ω2, r)

pairs where ω1, ω2 ∈ ci and r is a spatial rela-
tionship between them. The relationship feature
is given by:

frel = 〈yi,ω1,ω2〉(ω1,ω2,r)

where yi,ω1,ω2 = 1 if post-condition fi contains
a predicate rel(o1, o2) where o1, o2 are the ob-
jects referred by description ω1, ω2 respectively.
• Similarity Feature: This is given by the Jaccard

index of all the words in ci and the words in the
anchored lexical entry.
• Transition Probabilities: Given a logical form
zi−1, we can set priors on the logical form zi.
E.g., its unlikely that a logical form with post-
condition fi−1 = on(cup1, counter2) will be
succeeded by logical form with post-condition
fi = on(cup1, counter1). Further, the logical
forms that can occur in the end state (ci is the
last frame node) are also restricted. We there-
fore, define 3 transition probability features to
capture this:

ftr prior = 〈Ptr prior(fi,l1 , fi−1,l2)〉l1,l2
fatr prior = 〈Patr prior(pm(fi,l1), pm(fi−1,l2))〉l1,l2

fend = 〈Pend(pm(fi,l))〉l

6 Assignment Problem
During inference, we want to generate logical
forms z = (`, ξ) for a given lexical entry ` =
[ν ⇒ (λ~v.S, ξ′)]. However the number of such
logical forms are exponential in the number of
variables in ~v. Therefore, for practical reasons we
only consider the optimum assignment given by
arg maxξ φ(z = (`, ξ), · · ·) · θ. Note that we use
slightly different notation from the paper, for rea-
sons of brevity.

We convert this assignment problem into an
optimization problem and then solve it approxi-
mately. To do so, we define 0-1 variables yij ; 1 ≤
i ≤ m; 1 ≤ j ≤ n. Where m is the number of
variables in ~v and n is the number of objects in the
given environment e. Further yij = 1 iff variable
vi maps to the object oj . Using this notation, the
features described in Section 5 can be expressed
as follows.
1. Language and Logical Form

fle = 1
m

∑m
i=1

∑n
j=1(maxω ρ(ω, oj))yij

frecall = 1
|ω∈c|

∑
ω∈c maxj(

∑m
i=1 ρ(ω, oj)yij)

2. Logical Form
The environment prior terms can be easily ex-

pressed in a form which is polynomial in yij . For
example, the feature f (2)e-prior for the parametrized
post-condition (state v1 water) ∧ (on v1 v2)
can be expressed as:∑m

r,s=1 P
(2)
e-prior((state or water) ∧ (on or os))y1ry1s

3. Logical Form and Environment
Similarly, the fee term can be expressed as:
fee = 1

m

∑m
i=1

∑n
j=1 ∆(ξ′(vi), oj))yij

4. Relationship Feature
For every (ω1, ω2, r) ∈ c pair; we find the ob-
jects oj1 , oj2 referred to by these descriptions. Let
the post-condition f contain atoms f1, f2, · · · fl of
the type r(v1, v2) then for each such predicate, we
consider the term y1j1y2j2 .
5. Transition Probabilities
Transition probabilities are expressed similar to
environment priors.

Dropping the higher order terms (generally
small) and the recall term(to simplify the opti-
mization); we get a quadratic program of the form:

max aTx+ xTBx

Px ≤ q

The linear constraints Px ≤ q consists of yij ∈
{0, 1},

∑
j yij = 1 and semantic constraints based

on preconditions as given in the planner. E.g., for
the post-condition on(v1, v2), the planner precon-
ditions tells that v1 mus satisfy IsGraspable(v1);
we therefore add these semantic constraints as in-
ferred from the planner.

In this form, the assignment problem is noncon-
vex and does not necessarily admit a unique solu-
tion. While this can be solved by standard solvers
such as AlgLib library; this optimization is quite
slow and hence for practical reasons we drop the B
term and solve the remaining linear program using
a fast interior point solver after relaxation. The ex-
periments in the paper are reported based on these
approximations.

