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A Comparison of different schedules
We compare the two different scheduling schemes
in Figure 7. The three widely used monotonic
schedules are shown in the top row, including lin-
ear, sigmoid and cosine. We can easily turn them
into their corresponding cyclical versions, shown
in the bottom row.

B Proofs on the � and MI
When scheduled with �, the training objective
over the dataset can be written as:

F = �F
E

+ �F
R

(12)

We proceed the proof by re-writing each term sep-
arately.

B.1 Bound on F
E

Following (Li et al., 2017), on the support of
(x, z), we denote q as the encoder probability
measure, and p as the decoder probability mea-
sure. Note that the reconstruction loss for z can
be writen as its negative log likelihood form as:

F
E

= �E
x⇠q(x),z⇠q(z|x)[log p(x|z)]. (13)

Lemma 1 For random variables x and z with
two different probability measures, p(x, z) and
q(x, z), we have

H
p

(z|x)

= �E
z⇠p(z),x⇠p(x|z)[log p(z|x)]

= �E
z⇠p(z),x⇠p(x|z)[log q(z|x)]

� E
z⇠p(z),x⇠p(x|z)

⇥
log p(z|x) � log q(z|x)

⇤

= �E
z⇠p(z),x⇠p(x|z)[log q(z|x)]

� E
p(x)(KL(p(z|x)kq(z|x)))

 �E
z⇠p(z),x⇠p(x|z)[log q(z|x)] (14)

where H
p

(z|x) is the conditional entropy. Simi-
larly, we can prove that

H
q

(x|z)  �E
x⇠q(x),z⇠q(z|x)[log p(x|z)] (15)

From lemma 1, we have

Corollary 1 For random variables x and z with
probability measure p(x, z), the mutual informa-
tion between x and z can be written as

I
q

(x, z) = H
q

(x) � H
q

(x|z) � H
q

(x)

+ E
x⇠q(x),z⇠q(z|x)[log p(x|z)]

= H
q

(x) + F
E

(16)

B.2 Decomposition of F
R

The KL term in (5) can be decomposed into two
refined terms (Hoffman and Johnson, 2016):
F
R

= E
q(x)[KL(q(z|x)||p(z))]

= E
q(z,x)[(log q(z|x) � log p(z))]

= E
q(z,x)[(log q(z|x) � log q(z)]

+ E
q(z,x)[log q(z) � log p(z))]

= E
q(z,x)[(log q(z,x) � log q(x) � log q(z)]

+ E
q(z,x)[log q(z) � log p(z))]

= I
q

(z,x)

| {z }
F1: Mutual Info.

+ KL(q(z)||p(z))| {z }
F2: Marginal KL

(17)

C Model Description

C.1 Conditional VAE for dialog
Each conversation can be represented via three
random variables: the dialog context c composed
of the dialog history, the response utterance x, and
a latent variable z, which is used to capture the la-
tent distribution over the valid responses(� = 1)
(Zhao et al., 2017). The ELBO can be written as:

log p
✓

(x|c) � LELBO (18)
= E

q�(z|x,c)
⇥
log p

✓

(x|z, c)
⇤

� �KL(q
�

(z|x, c)||p(z|c))

C.2 Semi-supervised learning with VAE
We use a simple factorization to derive the ELBO
for semi-supervised learning. ↵ is introduced to
regularize the strength of classification loss.

log p
✓

(y,x) � LELBO (19)
= E

q�(z|x)
⇥
log p

✓

(x|z) + ↵ log p
 

(y|z)

⇤

� �KL(q
�

(z|x)||p(z)) (20)

where  is the parameters for the classifier.
Good latent codes z are crucial for the the

classification performance, especially when sim-
ple classifiers are employed, or less labelled data
is available.
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Figure 7: Comparison between traditional monotonic and proposed cyclical annealing schedules. The top row
shows the traditional monotonic schedules, and the bottom row shows their corresponding cyclical schedules.
M = 4 cycles are illustrated, R = 0.5 is used for annealing within each cycle.

D More Experimental Results

D.1 CVAE for Dialog Response Generation
Code & Dataset We implemented different
schedules based on the code5 published by Zhao
et al. (2017). In the SW dataset, there are 70
available topics. We randomly split the data into
2316/60/62 dialogs for train/validate/test.

Results The results on full BLEU scores are
shown in Table 5. The cyclical schedule outper-
forms the monotonic schedule in both settings.
The learning curves are shown in Figure 8. Under
similar ELBO results, the cyclical schedule pro-
vide lower reconstruction errors, higher KL val-
ues, and higher BLEU values than the monotonic
schedule. Interestingly, the monotonic schedule
tends to overfit, while the cyclical schedule does
not, particularly on reconstruction errors. It means
the monotonic schedule can learn better latent
codes for VAEs, thus preventing overfitting.

D.2 Semi-supervised Text Classification
Dataset Yelp restaurant reviews dataset utilizes
user ratings associated with each review. Reviews
with rating above three are considered positive,
and those below three are considered negative.
Hence, this is a binary classification problem. The
pre-processing in (Shen et al., 2017) allows senti-
ment analysis on sentence level. It further filters
the sentences by eliminating those that exceed 15
words. The resulting dataset has 250K negative
sentences, and 350K positive ones. The vocabu-
lary size is 10K after replacing words occurring
less than 5 times with the “<unk>” token.

Results The tSNE embeddings are visualized in
Figure 9. We see that cyclical � provides much

5
https://github.com/snakeztc/

NeuralDialog-CVAE

Model CVAE CVAE+BoW
Schedule M C M C
B1 prec 0.326 0.423 0.384 0.397
B1 recall 0.214 0.391 0.376 0.387
B2 prec 0.278 0.354 0.320 0.331
B2 recall 0.180 0.327 0.312 0.323
B3 prec 0.237 0.299 0.269 0.279
B3 recall 0.153 0.278 0.265 0.275
B4 prec 0.185 0.234 0.211 0.219
B4 recall 0.122 0.220 0.210 0.219

Table 5: Comparison on dialog response generation.
BLEU (B) scores 1-4 are used for evaluation. Mono-
tonic (M) and Cyclical (C) schedules are tested on two
models.

more separated latent structures than the other two
methods.

D.3 Hyper-parameter tuning
The cyclical schedule has two hyper-parameters
M and R. We provide the full results on M and R
in Figure 11 and Figure 12, respectively. A larger
number of cycles M can provide higher perfor-
mance for various proportion value R.
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Figure 8: Full results of CVAE and BoW+CVAE on SW dataset. Under similar ELBO results, the cyclical schedule
provide lower reconstruction errors, higher KL values, and higher BLEU values than the monotonic schedule.
Interestingly, the monotonic schedule tends to overfit, while the cyclical schedule does not.

(a) Cyclical � VAE (b) Monotonic � VAE (c) AE
Figure 9: Comparison of tSNE embeddings for three methods on Yelp dataset. This can be considered as the
unsupervised feature learning results in semi-supervised learning. More structured latent patterns usually lead to
better classification performance.
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Figure 10: Ablation study on cyclical schedules on � and ⌘.

Figure 11: The impact of hyper-parameter M : number of cycles. A larger number of cycles lead to better perfor-
mance. The improvement is more significant when R is small. The improvement is small when R is large.



Figure 12: The impact of hyper-parameter R: proportion for the annealing stage. A larger R leads to better
performance for various M . Small R performs worse, because the schedule becomes more similar with constant
schedule. M = 1 recovers the monotonic schedule. Contrary to the convention that typically adopts small R, our
results suggests that larger R should be considered.


