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1 Experimental Details

For tuning the base classifier, we used grid search
to choose the strength of regularization strength,
testing 11 values from 0.01 to 1000. On each ex-
periment, the training set was split into five ran-
dom folds. A classifier was trained for each four-
fifths of the data, using the remaining fifth as a
validation set in each case. The validation set was
used to choose regularization strength (using F1 or
calibration as a performance metric), as well as to
estimate secondary models, such as ACC or Platt
scaling. The predicted proportions from each of
the five models (one for each development fold)
were then averaged to produce the final estimate
of proportions. Reweighting, Platt scaling, CC,
and ACC were all based on the model trained us-
ing F1. For Platt scaling, we do not regularize the
secondary model, but instead replace the binary la-
bels with smoothed target values, as suggested in
the original paper (Platt, 1999). Because ACC can
result in inadmissible values in extreme cases, we
threshold its predictions to be in the range [0, 1].

2 Datasets

Media Frames Corpus. For this dataset, we
treat each framing dimension for each of three is-
sues (immigration, same-sex marriage, and smok-
ing) as a separate subtask. Because there are fewer
labeled instances in this dataset than the others, we
only create a single split into a source and target
corpus for each subtask, treating the articles pub-
lished before 2009 as a source corpus, and testing
on articles from 2009–2012. Most documents in
this dataset were annotated by two annotators, so
we weight these inversely proportional to the num-
ber of annotators for each instance.

Amazon reviews. For this dataset, we made use
of the 5-core subsets for five mid-sized product

categories: 1) clothing, shoes and jewelry; 2)
home and kitchen; 3) sports and outdoors; 4) toys
and games; and 5) tools and home improvement,
and treat the proportion of people rating the re-
view as “helpful” as the target. For each cate-
gory, we create separate subtasks by treating each
pair of adjacent years in the range 2010–2014 as
a source and target corpus (using the earlier year
as the source and the later as the target). As with
the MFC, we weight instances with multiple votes
inversely proportional to the total number of votes
per instance.

Yelp reviews. For this dataset, we used three
pairs of cities with approximately the same num-
bers of reviews: Toronto and Scottsdale; Charlotte
and Pittsburgh; and Tempe and Henderson. For
each pair, we created multiple subtasks by treating
each pair of adjacent years as a source and target
corpus, respectively, for the years 2009–2017. We
ignore the star rating, the title of the review and in-
formation about the author, and only consider the
review text and location (as a label).

Twitter sentiment. For this dataset, we only
make use of what is designated as the official train-
ing set (which is the vast majority of instances).
Similar to the other datasets, we create subtasks
by creating a source and target corpus from each
pair of adjacent days for which both days had at
least 4,000 tweets. Note that the tweets from after
day 166 appear to be artificially biased (containing
only positive or negative tweets), thus we exclude
these from the analysis.

3 Simulation Details

To simulate a comparison of PCC and SRS when
we are able to randomly sample instances to be
labeled from the target corpus, we generate sparse
binary data and sparse weights and then fit a model



with the same form and hyperparameters to a sub-
set of the data. Specifically, we use the follow-
ing data generating process, for i = 1, . . . , N and
j = 1, . . . , P :

Xij ∼ Bernoulli(px)

βj ∼ Laplace(0, 1)

β0 ∼ N (0, 1)

pi = Sigmoid(Xi,: · β + β0)

yi ∼ Bernoulli(pi)

We then fit this model to a subset of the data using
an l1-regularized logistic regression model with
regularization strength equal to 1, and average the
predicted probabilities over all instances (PCC), or
simply average the observed labels in the subset
(SRS). Figure 3 in the paper was made using val-
ues of N = 20000, P = 10000, and px = 0.01,
averaged over 200 repetitions, varying the amount
of labeled data available to the models.

4 Variance of Simple Random Sampling

As noted in the paper, if we were able to sample
and annotate data from the target corpus with re-
placement, the variance of SRS for binary labels
would be p̄(1−p̄)

L , where p̄ = 1
NT

∑NT
i=1 pi, and

pi = p(yi = 1 | xi). In the case where we sample
a random set of instances from the target corpus
and annotate each one exactly once, the variance
of the resulting estimate is somewhat more com-
plicated, as there are two sources of randomness –
the set of instances selected for annotation (A) and
the labels returned by the annotation function (Y ).
Using the law of total variance, we have

VA,Y [q̂SRS]

= EA[VY [q̂SRS | A]] + VA[EY [q̂SRS | A]].

(1)

Note that the first component in Equation (1)
will be zero if pi = 0 or pi = 1, ∀i, and is max-
imized if pi = 0.5, ∀i. Conversely, the second
component is equal to zero if all pi have the same
value, and is maximized if the pis are evenly split
between pi = 0 and pi = 1. As such, there is a
tradeoff between these two components.

We can further simplify the above terms as fol-

lows. First,
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where S2 is the sample variance of the set of pis
in the target corpus. Similarly,

VA[EY [q̂SRS | A]] = VA
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For a sufficiently large L andNT , we can approxi-
mate this with the central limit theorem for a finite
population (Bellhouse, 2001), which gives us

VA [p̄A] ≈ S2

(
1

L
− 1

NT

)
. (10)

When we only have access to a single label
per instance, it is not possible to estimate S2, but
we can nevertheless combine the two parts above
and use a standard plug-in estimator to approx-
imate an upper bound on the variance of sim-
ple random sampling, V̂[q̂SRS] ≈ ȳ(1−ȳ)

L , where
ȳ = 1

L

∑
i∈A yi, and empirically this produces a

reasonable, if somewhat pessimistic estimate.
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