
E Applications of Sampling

In this paper, we evaluate our sampling algorithms
“intrinsically” by how well a sample approximates
the model distribution pθ—rather than “extrinsically”
by using the samples in some larger method.

That said, §1.3 did list some larger methods that
make use of sampling. We review them here for the
interested reader.

Minimum-risk decoding seeks the output

argmin
z

∑
y

pθ(y | x) · loss(z | y) (47)

In the special case where loss(z | y) simply asks
whether z 6= y, this simply returns the “Viterbi”
sequence y that maximises pθ(y | x). However, it
may give a different answer if the loss function gives
partial credit (when z ≈ y), or if the space of outputs
z is simply coarser than the space of taggings y—
for example, if there are many action sequences y
that could build the same output structure z. In these
cases, the optimal z may win due to the combined
support of many suboptimal y values, and so finding
the optimal y (the Viterbi sequence) is not enough
to determine the optimal z.

The risk objective (47) is a expensive expectation
under the distribution pθ(y | x). To approximate it,
one can replace pθ(y | x) with an approximation
p̂(y) that has small support so that the summation
is efficient. Particle smoothing returns such a p̂—
a non-uniform distribution (28) over M particles.
Since those particles are randomly drawn, p̂ is it-
self stochastic, but E [p̂(y)] ≈ pθ(y | x), with the
approximation improving with the quality of the pro-
posal distribution (which is the focus of this paper)
and with M .

In supervised training of the model (1) by max-
imizing conditional log-likelihood, the gradient of
log p(y∗ | x) on a single training example (x,y∗)
is ∇θ log pθ(y

∗ | x) = ∇θG∗T −
∑

y pθ(y | x) ·
∇θGT . The sum is again an expectation that can be
estimated by using p̂. Since E [p̂(y)] ≈ pθ(y | x),
this yields a stochastic estimate of the gradient that
can be used in the stochastic gradient ascent algo-
rithm (Robbins and Monro, 1951).21

21Notice that the gradient takes this “difficult” form only
because the model is globally normalized. If we were training a
locally normalized conditional model (McCallum et al., 2000),
or a locally normalized joint model like equation (4), then sam-
pling methods would not be needed, because the gradient of
the (conditional or joint) log-likelihood would decompose into
T “easy” summands that each involve an expectation over the
small set of yt values for some t, rather than over the exponen-

In unsupervised or semi-supervised training of a
generative model pθ(x,y), one has some training
examples where y∗ is unobserved or observed in-
completely (e.g., perhaps only z is observed). The
Monte Carlo EM algorithm for estimating θ (Wei
and Tanner, 1990) replaces the missing y∗ with sam-
ples from pθ(y | x, partial observation) (this is the
Monte Carlo “E step”). This multiple imputation
procedure has other uses as well in statistical analy-
sis with missing data (Little and Rubin, 1987).

Modular architectures provide another use for
sampling. If pθ(y | x) is just one stage in an NLP
annotation pipeline, Finkel et al. (2006) recommend
passing a diverse sample of y values on to the
next stage, where they can be further annotated and
rescored or rejected. More generally, in a graphi-
cal model that relates multiple strings (Bouchard-
Côté et al., 2007; Dreyer and Eisner, 2009; Cotterell
et al., 2017), inference could be performed by parti-
cle belief propagation (Ihler and McAllester, 2009;
Lienart et al., 2015), or with the help of stochastic-
inverse proposal distributions (Stuhlmüller et al.,
2013). These methods call conditional sampling as
a subroutine.

tially larger set of strings y. However, this simplification goes
away outside the fully supervised case, as the next paragraph
discusses.

2 × 101 3 × 101 4 × 101 6 × 101

0

5

10

15

20

25

30

35

PF
PS: inclusive KL
PS: exclusive KL
PS: combined

Figure 4: Offset KL divergence on the last char task: a patho-
logical case where a naive particle filtering sampler does really
horribly, and an ill-trained smoothing sampler even worse. The
logarithmic x-axis is the particle size used to train the sampler.
At test time we evaluate with the same particle size (M = 32).

F Effect of different objective functions
on lookahead optimization

§5 discussed inclusive and exclusive KL diver-
gences, and gave our rationale for optimizing an
interpolation of the two. Here we study the effect
of the interpolation weight. We train the lookahead
sampler, and the joint language model, on a toy prob-
lem called “last char,” where y is a deterministic
function of x: either a lowercased version of x, or
an identical copy of x, depending on whether the
last character of x is 0 or 1. Note that this problem
requires lookahead.

We obtain our x sequences by taking the
phoneme sequence data from the stressed syl-
lable tagging task and flipping a fair coin to
decide whether to append 0 or 1 to each se-
quence. Thus, the dataset may include (x,y)
pairs such as (K AU CH 0, k au ch 1)
or (K AU CH 1, K AU CH 1), but not
(K AU CH 1, k au ch 1).

We treat this as a tagging problem, and treat it
with our tagging model in §6.1. Results are in Fig-
ure 4. We see that optimizing for KL(p̂||q) at a
low particle size gives much worse performance
than other methods. On the other hand, the objec-
tive function KL(q||p) achieves constantly good per-
formance. The middle ground KL(p̂||q)+KL(q||p)

2 im-
proves when the particle size increases, and achieves
better results than KL(q||p) at larger particle sizes.

G Generative process for source
separation

Given an alphabet Σ, J strings
x(1),x(2), . . . ,x(J) ∈ Σ∗ are independently
sampled from the respective distributions
p(1), . . . p(J) over Σ∗ (possibly all the same
distribution p(1) = · · · = p(J)). These source
strings are then combined into a single observed
string x, of length K =

∑
jKj , according to an in-

terleaving string y, also of length K. For example,
y = 1132123 means to take two characters from
x(1), then a character from x(3), then a character
from x(2), etc. Formally speaking, y is an element
of the mix language Yx = MIX(1k1 , 2k2 , . . . , jkj),
and we construct x by specifying the character
xk ∈ Σ to be x(yk)|{i≤k:yi=yk}|. We assume that y is
drawn from some distribution over Yx. The source
separation problem is to recover the interleaving
string y from the interleaved string x.

We assume that each source model p(j)(x(j)) is
an RNN language model—that is, a locally normal-
ized state machine that successively generates each
character of x(j) given its left context. Thus, each
source model is in some state s

(j)
t after generating

the prefix x
(j)
:t . In the remainder of this paragraph,

we suppress the superscript (j) for simplicity. The
model now stochastically generates character xt+1

with probability p(xt+1 | st), and from st and this
xt+1 it deterministically computes its new state st+1.
If xt+1 is a special “end-of-sequence” character EOS,
we return x = x:t.

Given only x of length T , we see that y could
be any element of {1, 2, . . . , J}T . We can write
the posterior probability of a given y (by Bayes’
Theorem) as

p(y | x) ∝ p(y)
J∏
j=1

p(j)
(
x(j)

)
(48)

where (for this given y) x(j) denotes the subse-
quence of x at indices k such that yk = j. In our
experiments, we assume that y was drawn uniformly
from Yx, so p(y) is constant and can be ignored. In
general, the set of possible interleavings Yx is so
large that computing the constant of proportional-
ity (partition function) for a given x becomes pro-
hibitive.

