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In this Supplementary Material, we provide de-
tails omitted in the main text.

• Sect. S1: Details on the MLP-based models and
the attention-based models (Sect. 3.1 and 5.2 of
the main text).

• Sect. S2: WUPS-based similarity for filtering
out ambiguous decoys (Sect. 4.1 of the main
text).

• Sect. S3: Detailed results on VQA (Antol
et al., 2015) w/o question-answer (QA) pairs
that have Yes/No as the targets (Sect. 5.3 of
the main text).

• Sect. S4: Experiments on VQA2 (Goyal et al.,
2017) and COCOQA (Ren et al., 2015) (Sect.
5 of the main text).

• Sect. S5: Details on user studies (Sect. 5.2 of
the main text).

• Sect. S6: Analysis on different question and an-
swer embeddings (Sect. 5.2 of the main text).

• Sect. S7: Analysis on random decoys (Sect. 5.3
of the main text).

S1 Details on the MLP-based models and
the attention-based models

As mentioned in the main text, we benchmark the
performance of popular Visual QA models on our
remedied dataset. Here we provide the details
about those models we experimented and its cor-
responding training configurations.

S1.1 The simple MLP-based model
The one hidden-layer MLP model used in our ex-
periments has 8,192 hidden units, exactly follow-
ing (Jabri et al., 2016). It contains a batch nor-
malization layer before ReLU, and a dropout layer
after ReLU. We set the dropout rate to be 0.5.
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Figure F1: Illustration of MLP-based models.

The input to the model is the concatenated fea-
tures of images, questions, and answers, as shown
in Fig. F1. We change all characters to lowercases
and all integer numbers within [0, 10] to words be-
fore computing WORD2VEC. We perform `2 nor-
malization to features of each information before
concatenation.

S1.2 A variant of SMem (Attention*)
In the main text we experiment with a straightfor-
ward attention model similar to the spatial mem-
ory network (SMem) (Xu and Saenko, 2016), as
shown in Fig. F2 (a). Instead of computing the
visual attention for each word in the question, we
directly compute the visual attention for the en-
tire question using its average WORD2VEC embed-
ding. We then concatenate the resulting visual fea-
tures with the feature of the question and a candi-
date answer (in the same way as the MLP-based
model in Sect. S1.1) as the input to train a one-
hidden-layer MLP for binary classification.

S1.3 A variant of HieCoAtten (HieCoAtten*)
Beyond the Attention*, we also experimented
HieCoAtt*, a variant of the model proposed by Lu
et al. (2016) (as shown in Fig. F2 (b)). Our model
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Figure F2: Illustration of attention-based Visual QA models.

inherits all components in (Lu et al., 2016) that
are related to computing the joint multi-modal em-
bedding (from images and questions). To adapt to
the multiple-choice setting, we discard the multi-
way classifier in the original HieCoAtt and use
its penultimate activations as feature for images.
Similarly, we then concatenate this together with
the features of questions and candidate answers,
and input it to a one-hidden-layer MLP, following
exact the configuration as Sect. S1.1.

S1.4 Optimization

We train all our models using stochastic gradient
based optimization method with mini-batch size of
100, momentum of 0.9, and the stepped learning
rate policy: the learning rate is divided by 10 after
every M mini-batches. We set the initial learning
rate to be 0.01 (we further consider 0.001 for the
case of fine-tuning in Sect. 5.3 of the main text).
For each model, we train with at most 600,000
iterations. We treat M and the number of itera-
tions as hyper-parameters of training. We tune the
hyper-parameters on the validation set.

Within each mini-batch, we sample 100 IQA
triplets. For each triplet, we randomly choose to
use QoU-decoys or IoU-decoys when training on
IoU +QoU, or QoU-decoys or IoU-decoys or Orig
when training on All. We then take the target and 3
decoys for each triplet to train the binary classifier
(i.e., minimize the logistic loss). Specifically on
VQA, which has 17 Orig decoys for a triplet, we
randomly choose 3 decoys out of them. That is,
100 triplets in the mini-batch corresponds to 400
examples with binary labels. This procedure is
to prevent unbalanced training, where machines
simply learn to predict the dominant label, as sug-
gested by Jabri et al. (2016).

We note that in all the experiments in the main
text, we use the same type of decoy sets for train-
ing and testing.

S2 WUP-based similarity for filtering
out ambiguous decoys

We use the Wu-Palmer (WUP) score (Wu and
Palmer, 1994), which characterizes the word sense
similarity, to filter out ambiguous decoys to the
target (correct answer). The WUP score is com-
puted based on the WordNet hierarchy. Essen-
tially, it measures the similarity of two nodes (i.e.,
synsets) in the hierarchy. As a word might cor-
respond to multiple nodes, we measure the word
similarity as follows:

WUP (w1, w2) = max
(n1,n2)∈N1×N2

WUP (n1, n2),

(1)

where N1 and N2 are the sets of nodes that words
w1 and w2 correspond to, respectively. That is, the
word similarity is based on the most similar pair
of nodes from both words. We consider only the
NOUN and ADJ nodes for tractable computation.

Since a candidate answer may contain more
than one word (i.e., a word sequence), we com-
pute the similarity between two word sequences
WS1 and WS2 as follows

WUP (WS1,WS2) =

max{
∏

w1∈WS1

max
w2∈WS2

WUP (w1, w2), (2)

∏
w2∈WS2

max
w1∈WS1

WUP (w1, w2)}.

This formulations is highly similar to the one pro-
posed by Malinowski and Fritz et al. (2014) for



evaluating open-ended Visual QA. The main dif-
ference is that we use “max” rather than “min” to
compute the final score. Note that our purpose of
using the WUP score is to filter out ambiguous de-
coys to the target. For example, we consider “a
cute cat” to be ambiguous to “cat”. Using eq. (2)
gives a similarity 1, which can not be achieved by
taking “min”.

S2.1 Analysis on the coverage

Among all the 139,868 IQA triplets in Visual7W,
the target answers of 137,557 of them ( 98%) can
find corresponding nodes in the WordNet hierar-
chy, so the scores can be computed. For VQA, the
ratio is 97%. For qaVG, the ratio is 99%.

S3 Detailed results on VQA w/o QA
pairs that have Yes/No as the targets

As mentioned in Sect. 5.3 of the main text, the val-
idation set of VQA contains 45,478 QA pairs (out
of totally 12,1512 pairs) that have Yes or No as the
correct answers. The only reasonable decoy to Yes
is No, and vice versa — any other decoy could be
easily recognized in principle. Since both of them
are among top 10 frequently-occurring answers,
they are already included in the Orig decoys —
our IoU-decoys and QoU-decoys can hardly make
noticeable improvement. We thus remove all those
pairs (denoted as Yes/No QA pairs) to investigate
the improvement on the remaining pairs, for which
having multiple choices makes sense. We denote
the subset of VQA as VQA− (we remove Yes/No
pairs in both training and validation set).

We conduct the same experiments as in Sect.
5.3 of the main text on VQA−. Table T1 sum-
marizes the machines’ as well as humans’ results.
Compared to Table 4 of the main text, most of
the results drop, which is expected as those re-
moved Yes/No pairs are considered simpler and
easier ones — their effective random chance is
50%. The exception is for the MLP-IA models,
which performs roughly the same or even better on
VQA−, suggesting that Yes/No pairs are somehow
difficult to MLP-IA. This, however, makes sense
since without the questions (e.g., those start with
“Is there a ...” or “Does the person ...”), a machine
cannot directly tell if the correct answer falls into
Yes or No, or others.

We see that on VQA−, the improvement by our
IoU-decoys and QoU-decoys becomes significant.
The gain brought by images on QoU (from 39.3%

Method Orig IoU QoU IoU +QoU All
MLP-A 28.8 42.9 34.5 23.6 15.8
MLP-IA 43.0 44.8 53.2 35.5 28.5
MLP-QA 45.8 80.7 39.3 38.2 31.9
MLP-IQA 55.6 81.8 56.6 53.7 46.5
HieCoAtt∗ 54.8 - - 55.6 -
Attention∗ 58.5 - - 58.6 -
Human-IQA - - - 85.5 -
Random 5.6 25.0 25.0 14.3 4.2

∗: based on our implementation or modification

Table T1: Accuracy (%) on VQA−-2014val, which
contains 76,034 triplets.

to 56.6%) is much larger than that on Orig (from
45.8% to 55.6%). Similarly, the gain brought by
questions on IoU (from 44.8% to 81.8%) is much
larger than that on Orig (from 43.0% to 55.6%).
After combining IoU-decoys and QoU-decoys as
in IoU +QoU and All, the improvement by either
including images to MLP-QA or including ques-
tions to MLP-IA is noticeable higher than that on
Orig. Moreover, even with only 6 decoys, the
performance by MLP-A on IoU +QoU is already
lower than that on Orig, which has 17 decoys,
demonstrating the effectiveness of our decoys in
preventing machines from overfitting to the in-
cidental statistics. These observations together
demonstrate how our proposed ways for creating
decoys improve the quality of multiple-choice Vi-
sual QA datasets.

S4 More experimental results on VQA2
and COCOQA

S4.1 Dataset descriptions

COCOQA (Ren et al., 2015) This dataset con-
tains in total 117,684 auto-generated IQT triplets
with no decoy answers. Therefore, we create de-
coys using our proposed approach and follow the
original data split, leading to a training set and a
testing set with 78,736 IQA triplets and 38,948
IQA triplets, respectfully.

VQA2 (Goyal et al., 2017) VQA2 is a succes-
sive dataset of VQA, which pairs each IQT triplet
with a complementary one to reduce the correla-
tion between questions and answers. There are
443,757 training IQT triplets and 214,354 valida-
tion IQT triplets, with no decoys. We generate de-
coys using our approach and follow the original
data split to organize the data. We do not consider
the test split as it does not indicate the targets (cor-
rect answers).



Method IoU QoU IoU +QoU
MLP-A 70.3 31.7 26.6
MLP-IA 73.4 73.3 60.7
MLP-QA 91.5 52.5 51.4
MLP-IQA 93.1 78.3 75.9
Random 25.0 25.0 14.3

Table T2: Test accuracy (%) on COCOQA.

Method IoU QoU IoU +QoU
MLP-A 37.7 41.9 27.7
MLP-IA 37.9 54.4 30.5
MLP-QA 84.2 48.3 48.1
MLP-IQA 86.3 63.0 61.1
Random 25.0 25.0 14.3

Table T3: Test accuracy (%) on VQA2-2017val.

S4.2 Experimental results

For both datasets, we conduct the same experi-
ments as in Sect. 5.3 of the main text using the
MLP-based models. As shown in Table T2, we
clearly see that with only answers being visible
to the model (MLP-A), the performance is close
to random (on the column of IoU +QoU-decoys),
and far from observing all three sources of infor-
mation (MLP-IQA). Meanwhile, models that can
observe either images and answers (MLP-IA) or
questions and answers (MLP-QA) fail to predict
as good as the model that observe all three sources
of information. Results in Table T3 also shows a
similar trend. These empirical observations meet
our expectation and again verify the effectiveness
of our proposed methods for creating decoys.

Besides, we also perform a more in-depth ex-
periment on VQA2, removing triplets with Yes/No
as the target. We name this subset as VQA2−. Ta-
ble T4 shows the experimental results on VQA2−.
Comparing to Table T3, we see that the over-
all performance for each model decreases as the
dataset becomes more challenging on average.
Specifically, the model that observes question and
answer on VQA2− performs much worse than that
on VQA2 (37.2% vs. 48.1%).

S5 Details on user studies

As mentioned in Sect. 5.2 of the main text, we pro-
vide details on user studies. Fig. F3 shows our
user interface. We perform the studies using Ama-
zon Mechanic Turk (AMT) on Visual7W (Zhu
et al., 2016), VQA (Antol et al., 2015) and Vi-
sual Genome (VG) (Krishna et al., 2017). We
mainly evaluate on our IoU-decoys and QoU-
decoys (combined together).

For each dataset, we randomly sample 1,000

Method IoU QoU IoU +QoU
MLP-A 39.8 33.7 21.3
MLP-IA 40.3 53.0 31.0
MLP-QA 84.8 37.6 37.2
MLP-IQA 85.9 56.1 53.8
Random 25.0 25.0 14.3

Table T4: Test accuracy (%) on VQA2−-2017val,
which contains 134,813 triplets.

image-question-target triplets together with the
corresponding IoU-decoys and QoU-decoys to
evaluate human performance. For each of these
triplets, three workers are assigned to select the
most correct candidate answer according to the
image and the question. We compute the average
accuracy of these workers and report them in Ta-
ble 3, 4 and 5 of the main text and Table T1.

We also conduct human evaluation using the
Orig decoys of Visual7W so as to investigate
the difference between human-generated and au-
tomatically generated decoys. We also study how
humans will perform given only partial informa-
tion (i.e., images + candidate answers or ques-
tions + candidate answers), again using the Orig
decoys of Visual7W. The corresponding interfaces
are shown in Fig. F4 and F5. For these studies,
we use the same set of 1,000 triplets used to eval-
uate our created decoys for fair comparison. We
make sure that no worker works on the same triplet
across the four studies on Visual7W. Results are
reported in Table 1 of the main text.

In summary, 169 workers are involved in our
studies. The total cost is $215 — the rate for ev-
ery 20 triplets is $0.25. On our IoU-decoys and
QoU-decoys, humans achieve 84.1%, 89.0%, and
82.5% on Visual7W, VQA, and VG, respectively.
Compared to the human performance on the Orig
decoys that involve human effort in creation (i.e.,
88.4% on Visual7W, and 88.5% on VQA as re-
ported in (Antol et al., 2015)), these results suggest
that the ways we create the decoys and the filtering
steps mentioned in Sect. 4.2 lead to high-quality
datasets with limited ambiguity.

S6 Analysis on different question and
answer embeddings

We consider GLOVE (Pennington et al., 2014) and
the embedding learned from translation (McCann
et al., 2017) on both question and answer embed-
dings. The results on Visual7W (IoU + QoU,
compared to Table 3 of the main text that uses
WORD2VEC) are in Table T5. We do not ob-



Figure F3: User interface for human evaluation on Visual7W (IoU-decoys+QoU-decoys).

Figure F4: User interface for human evaluation on Visual7W (Orig decoys), where questions are blocked.

Figure F5: User interface for human evaluation on Visual7W (Orig decoys), where images are not blocked.



Method GLOVE Translation WORD2VEC
MLP-A 18.0 18.0 17.7
MLP-IA 23.6 23.2 23.6
MLP-QA 38.1 38.3 37.8
MLP-IQA 52.5 51.4 52.0
Random 14.3 14.3 14.3

Table T5: Test accuracy (%) on Visual7W, comparing
different embeddings for questions and answers. The
results are reported for the IoU +QoU-decoys.

Method (A) (B) All
MLP-A 39.6 11.6 15.6
MLP-IA 53.4 40.3 22.2
MLP-QA 52.3 50.3 31.9
MLP-IQA 61.5 60.2 45.1
Random 10.0 10.0 10.0

Table T6: Test accuracy (%) on Visual7W, compar-
ing different random decoy strategies to our methods:
(A) Orig + uniformly random decoys from unique cor-
rect answers, (B) Orig + weighted random decoys w.r.t.
their frequencies, and All (Orig+IoU +QoU).

serve significant difference among different em-
beddings, which is likely due to that both the ques-
tions and answers are short (averagely 7 words for
questions and 2 for answers).

S7 Analysis on random decoys

We conduct the analysis on sampling random de-
coys, instead of our IoU-decoys and QoU-decoys,
on Visual7W. We collect 6 additional random de-
coys for each Orig IQA triplet so the answer set
will contain 10 candidates, the same as All in Ta-
ble 3 of the main text. We consider two strategies:
(A) uniformly random decoys from unique correct
answers, and (B) weighted random decoys w.r.t.
their frequencies. The results are in Table T6. We
see that different random strategies lead to drasti-
cally different results. Moreover, compared to the
All column in Table 3 of the main text, we see
that our methods lead to a larger relative gap be-
tween MLP-IQA to MLP-IA and MLP-QA than
both random strategies, demonstrating the effec-
tiveness of our methods in creating decoys.
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