
Appendices
A Expectation Propagation

In this appendix, we give a different perspective on
EP and its relationship to BP. We begin with Minka’s
original presentation of EP, where p is a product dis-
tribution but not necessarily a factor graph.

A.1 What is EP?

What is EP in general? Suppose we hope to approx-
imate some complex distribution p(x) by fitting a
log-linear model (i.e., an exponential-family model),

qθ(x)
def
= (1/Z) exp(θ · f(x))

where θ is a parameter vector and f(x) is a fea-
ture vector. It is well-known that the KL divergence
D(p || qθ) is convex and can be minimized by fol-
lowing its gradient, Ex∼qθ [f(x)]− Ex∼p[f(x)].

However, what if p is defined as some product of
factors? In this case, it may be intractable to com-
pute Ex∼p[f(x)]. EP is a specific iterative algorithm
for approximately fitting qθ in this setting, by solv-
ing a succession of simpler min-KL problems. Each
of these simpler problems does not use p but rather a
partially approximated version that combines a sin-
gle factor of p with the previous iteration’s estimate
of qθ. The algorithm and its justification can be
found in (Minka, 2001a; Minka, 2001b).

A.2 From EP to exact BP

Now suppose that X = (V1, V2, . . .), with each fac-
tor in p depending on only some of the variables Vi.
In other words, p is specified by a factor graph. Fur-
thermore, suppose we define the log-linear model
qθ to use all features of the form Vi = vi: that
is, one indicator feature for every possible variable-
value pair, but no features that consider pairs of
variables. In this case, it is not hard to see that
Ex∼p[f(x)] encodes the exact marginals of p. If
we could exactly minimize D(p || qθ), then we
would have Ex∼qθ [f(x)] = Ex∼p[f(x)], recovering
these exact marginals. This is the problem that EP
approximately solves, thus recovering approximate
marginals of p—just like BP.

In fact, Minka (2001b) shows that EP in this spe-
cial case is equivalent to loopy BP. Minka goes on

to construct more accurate EP algorithms by length-
ening the feature vector. However, recall from sec-
tion 2.3 that BP is already too slow in our setting! So
we instead derive a faster approximation by shorten-
ing the EP feature vector.

A.3 From EP to approximate BP

Put differently, when there are infinitely many val-
ues (e.g., Σ∗), we cannot afford the BP strategy of
a separate indicator feature for each variable-value
pair. However, we can still use a finite set of backed-
off features (e.g., n-gram features) that inspect the
values. Recall that in section 4, we designed a fea-
turization function fV for each variable V . We can
concatenate the results of these functions to get a
global featurization function f that computes fea-
tures of x = (v1, v2, . . .), just as in section A.2.
Each feature still depends on just one variable-value
pair.

In this backed-off case, EP reduces to the algo-
rithm that we presented in section 4—essentially
“BP with log-linear approximations”—which ex-
ploits the structure of the factor graph. We suppress
the proof, as showing the equivalence would re-
quire first presenting EP in terms of (Minka, 2001b).
However, it is a trivial extension of Minka’s proof
for the previous section. Minka presumably re-
garded the reduction as obvious, since his later pre-
sentation of EP in Minka (2005), where he relates
it to other message-passing algorithms, also exploits
the structure of the factor graph and hence is essen-
tially the same as section 4. We have merely tried to
present this algorithm in a more concrete and self-
contained way.

The approximate BP algorithm can alternatively
be viewed as applying EP within the BP algorithm,
using it separately at each variable V . Exact BP
would need to compute the belief at V as the product
of the incoming messages µF→V . Since this is a
product distribution, EP can be used to approximate
it by a log-linear function, and this is exactly how
our method finds θV (section 4.3). Exact BP would
also need to compute each outgoing message µV→F ,
as a product of all the incoming messages but one.
We recover approximations to these as a side effect.8

8Rather than running EP separately to approximate each of
these products, which would be more accurate but less efficient.

A.4 From approximate BP to EP
Conversely, any EP algorithm can be viewed as an
instance of “BP with log-linear approximations” as
presented in section 4. Recall that EP always ap-
proximates a distribution p(x) that is defined by a
product of factors. That corresponds to a trivial fac-
tor graph where all factors are connected to a single
variable X . The standard presentation of EP simply
runs our algorithm on that trivial graph, maintaining
a complex belief qX(x). This belief is a log-linear
distribution in which any feature may look at the en-
tire value x.

For readers who wish to work through the con-
nection, the notation of Minka (2001b, p. 20)

ti, t̃i, p̂i, q
new, qi

(where Minka drops the subscripts on the temporary
objects p̂ and q “for notational simplicity”) corre-
sponds respectively to our section 4’s notation

µFi→X , qθFi→X , p̂X , qθX , qθX→Fi

All of these objects are functions over some value
space. We use v ∈ Σ∗ to refer to the values. Minka
uses θ ∈ R, which is unrelated to our θ.

A.5 So is there any advantage?
In short, the algorithm of section 4 constitutes an al-
ternative general presentation of EP, one that builds
on understanding of BP and explicitly considers the
factor graph structure.

The difference in our presentation is that we start
with a finer-grained factor graph in which X is de-
composed into variables, X = (V1, V2, . . .), and
each factor F only looks at some of the variables.
Our features are constrained to be local to single
variables.

What would happen if we performed inference
on the trivial graph without taking advantage of
this finer-grained structure? Then the belief qX ,
which is a log-linear distribution parameterized by
θX , would take a factored form: qX(v1, v2, . . .) =
qV1(v1) · qV2(v2) · · · · . Here each qVi is a log-
linear distribution parameterized by a subvector θVi
of θX . The messages between X and a factor F
would formally be functions of the entire value of
X , but would only actually depend on the dimen-
sions Vi ∈ N (F). Their representations θX→F

aardvark 0.1
… …
rang 3.0
ring 4.0
rung 5.0
… …

aa
rd
va
rk

…

ra
ng

rin
g

ru
ng

…

aardvark0.1 0.20.10.1
…
rang 0.1 2.04.00.1
ring 0.1 7.01.02.0
rung 0.2 8.01.03.0
…

F1!

V2!

V1!
r i n g
ue ε ee

s e ha

s i n g
r a n guaeε εa

rs au

r i n g
ue ε

s e ha

Figure 5: A sketch of one step of finite-state BP in a
fragment of a factor graph. The red and blue machines
are weighted finite-state acceptors that encode messages,
while the black machine is a weighted finite-state trans-
ducer that encodes a factor. The blue message µF1→V2 is
computed by NEWFV from the red message µV1→F1 and
the black factor F1. Specifically, it is the result of com-
posing the red message with the factor and projecting the
result onto the blue tape. The tables display some of the
scores assigned by the red message and by the factor.

and θF→X would be 0 except for features of Vi ∈
N (F).

The resulting run of inference would be isomor-
phic to a run of our (approximate) BP algorithm.
However, it would lose some space and time effi-
ciency from failing to exploit the sparsity of these
vectors. It would also fail to exploit the factored
form of the beliefs. That factored form allows our
algorithm (section 4.3) to visit a single variable and
update just its belief parameters θVi (considering all
factors F ∈ N (Vi)). Under our algorithm, one can
visit a variable Vi more often if one wants to spend
more time refining its belief. Our algorithm can also
more carefully choose the order in which to visit
variables (section 4.4), by considering the topology
of the factor graph (Pearl, 1988), or considering the
current message values (Elidan et al., 2006).

B Variable-order n-gram models and
WFSAs

In this appendix, we describe automaton construc-
tions that are necessary for the main paper.

B.1 Final arcs

We standardly use h
c/k−→ h′ to denote an arc from

state h to state h′ that consumes symbol c with
weight k.

To simplify our exposition, we will use a non-
standard WFSA format where all weights appear
on arcs, never on final states. WFSAs can be triv-
ially converted between our expository format and
the traditional format used for implementation (Ap-
pendix D).

Wherever the traditional WFSA format would
designate a state h as a final state with stopping

weight k, we instead use an arc h
EOS/k−−→ 2. This arc

allows the WFSA to stop at state h by reading the
distinguished end-of-string symbol EOS and transi-
tioning to the distinguished final state 2.

For a WFSA in our format, we say formally that
an accepting path for string v ∈ Σ∗ is a path from
the initial state to 2 that is labeled with v EOS. The
weight of this path is the product of its arc weights,
including the weight of the EOS arc. We use Σ′

def
=

Σ ∪ {EOS} to denote the set of possible arc labels.

B.2 The substring setW
Section 3.3 defines a class of log-linear functions
based on a fixed finite set of stringsW .

We allow strings inW to include the symbols BOS

(“beginning of string”) and EOS (“end of string”).
These special symbols are not in Σ but can be used to
match against the edges of the string. To be precise,
the feature function fw is defined such that fw(v)
counts the number of times that w appears as a sub-
string of BOS v EOS (for any w ∈ W, v ∈ Σ∗). By
convention, fε(v)

def
= |v| + 1, so ε is considered to

match once for each character of v EOS.

IfW is too small, then the familyQ that is defined
fromW could be empty: that is, Q may not contain
any proper distributions qθ (see footnote 1). To pre-
vent this, it suffices to insist that W includes all n-
grams for some n (a valid choice is n = 0, which re-
quires only thatW contains ε). NowQ is not empty
because giving sufficiently negative weights to these
features (and weight 0 to all other features) will en-
sure that qθ has a finite normalizing constant Zθ.

Our experiments in this paper work with particu-
lar cases ofW . For our n-gram EP method,

(a) We takeW to consist of all strings of length n
in the regular language Σ∗ EOS?, plus all non-
empty strings of length ≤ n in the regular lan-
guage BOS Σ∗ EOS?.

For penalized EP with variable-length strings, the set
W corresponds to some specific collection of log-
linear weights that we are encoding or updating:

(b) During EP message passing, we must construct
ENCODE(θ) (where θ represents a variable-
to-factor message). Here we have W =
support(θ) = {w : θw 6= 0}, as stated in sec-
tion 3.5. Such WFSA encodings happen in sec-
tions 4.2 and 4.3.

(c) When we use the greedy growing method (sec-
tion 6.1) to estimate θ as an approximation to
a variable belief, W is set explicitly by that
method, as detailed in Appendix B.9 below.

(d) When we use proximal gradient (section 6.1)
to estimate θ as an approximation to a variable
belief,W is the current active set of substrings
w for which we would allow θw 6= 0. (Then the
resulting WFSA encoding is used to help com-
pute ∂D(p || qθ)/∂θw and so update θw.) This
active set consists of all strings w that currently
have θw 6= 0, together with all single-character
extensions of these w and of ε, and also all pre-
fixes of these w.

B.3 ModifyingW intoW
For generality, we will give our WFSA construction
below (in Appendix B.4) so that it works with any
set W . In case W lacks certain properties needed
for the construction, we construct a modified setW
that has these properties. Each substring in W will
correspond to a different arc in the WFSA.

Each w ∈ W must consist of a history
h(w) ∈ BOS?Σ∗ concatenated with a next charac-
ter n(w) ∈ Σ′. (These statements again use regular
expression notation.) That is, w = h(w)n(w).

Also, W must be closed under prefixes. That is,
if w ∈ W , then h(w) ∈ W , unless h(w) ∈ {BOS, ε}
since these are not legal elements ofW . For exam-
ple, to include w = abc inW , we must include it in
W along with ab and a; or to include w = BOS ab

in W , we must include it in W along with BOS a.

This ensures that our simple construction below will
give a WFSA that is able to detect w one character
at a time.

We convert the givenW intoW by removing all
strings that are not of the form BOS?Σ∗Σ′, and then
taking the closure under prefixes.

Again, let us be concrete about the particular W
that we use in our experiments:

(a) For an n-gram model, we skip the above con-
version and simply setW = W . Even though
W does not then satisfy the prefix-closure prop-
erty, the construction below will still work (see
footnote 9).

(b) When we are encoding an infinite θ during
message passing, sparsity in θ may occasion-
ally mean that we must add strings when en-
largingW intoW .

(c,d) When we are estimating a new θ, the W that
we use already has the necessary properties, so
we end up withW = W just as in the n-gram
model. We will use this fact in section B.6.

B.4 Encoding (W,θ) as a WFSA
GivenW and a parameter vector θ (indexed byW ,
not byW), we will now build ENCODE(θ), a WFSA
that can be used to score strings v ∈ Σ∗ (sec-
tion 3.2). Related constructions are given by Mohri
(2005) for the unweighted case and by Allauzen et
al. (2003) for language modeling.

For any non-empty string w ∈ BOS?Σ∗, define
the backoff b(w) to be the longest proper suffix ofw
that is a proper prefix of some element ofW . Define
the bridge b̄(w) similarly except that it need not be
a proper suffix of w (it may equal w itself).9 In ad-
dition, we define b̄(w) to be 2 when w is any string
ending in EOS.

Finally, for any w ∈ W , define the weight
k(w) = exp

∑
w′∈(suffixes(w)∩W) θw′ . This weight

9b(w) or b̄(w) may become a state in the WFSA. If so, we
need to ensure that there is a path from this state that reads the
remaining characters of any “element of W”—call it w′—of
which it is a proper prefix. The prefix closure property guar-
antees this by stating that if w′ ∈ W then h(w′) ∈ W (and
so on recursively). A weaker property would do: we only need
h(w′) ∈ W if there actually exists some w ∈ W such that
b(w) or b̄(w) is a proper prefix of h(w′). This condition never
applies for the n-gram model.

will be associated with the arc that consumes the fi-
nal character of a copy of substring w, since con-
suming that character (while reading the input string
v) means that the WFSA has detected an instance
of substring w, and thus all features in W fire that
match against suffixes of w.

We can now define the WFSA ENCODE(θ), with
weights in the (+,×) semiring. Note that this
WFSA is unambiguous (in fact deterministic).10

• The set of states is H = {h(w) : w ∈ W} to-
gether with the distinguished final state 2 (see
Appendix B.1).

• The initial state is BOS, if BOS ∈ H . Other-
wise the initial state is ε, which is in H thanks
to the prefix-closure property.

• The ordinary arcs are {h(w)
n(w)/k(w)−−−−−→ b̄(w) :

w ∈ W}. As explained in Appendix B.1, the
notation n(w)/k(w) means that the arc reads
the character n(w) (possibly EOS) with weight
k(w). Note that we have one ordinary arc for
every w ∈ W .

• The failure arcs are {h φ/1−→ b(h)} where h ∈
H and h 6= ε.

• If ε is inH , there is also a default arc ε
ρ/k(ε)−−→ ε.

A default arc is one that has the special label ρ. It
is able to consume any character in Σ′ that is not the
label of any ordinary arc leaving the same state. To
avoid further discussion of this special case, we will
assume from here on that the single default arc has
been implemented by replacing it with an explicit
collection of ordinary arcs labeled with the various
non-matching characters (perhaps including EOS),
and each having the same weight k(ε). Thus, the
state ε has |Σ′| outgoing arcs in total.

A failure arc (Allauzen et al., 2003) is one that
has the special label φ. An automaton can traverse it
if—and only if—no other option is available. That
is, when the next input character is c ∈ Σ′, the au-
tomaton may traverse the φ arc from its current state

10As a result, the + operator is never actually needed to de-
fine this WFSA’s behavior. However, by specifying the (+,×)
semiring, we make it possible to combine this WFSA with other
WFSAs (such as p) that have weights in the same semiring.

h unless there exists an ordinary c arc from h. In
contrast to ρ, traversing the φ arc does not actu-
ally consume the character c; the automaton must
try again to consume it from its new state.

The construction allows the automaton to back off
repeatedly by following a path of multiple φ arcs,

e.g., abc
φ/1−→ bc

φ/1−→ c
φ/1−→ ε. Thus, the automaton

can always manage to read the next character in Σ′,
if necessary by backing off all the way to the ε state
and then using the ρ arc.

In the case of a fixed-order n-gram model, each
state has explicit outgoing arcs for all symbols in Σ′,
so the failure arcs are never used and can be omit-
ted in practice. For the variable-order case, how-
ever, failure arcs can lead to a considerable reduc-
tion in automaton size. It is thanks to failure arcs
that ENCODE(θ) has only |W| ordinary arcs (count-
ing the default arc if any). Indeed, this is what is
counted by (8).11

B.5 Making do without failure arcs
Unfortunately, our current implementation does not
use failure arcs, because we currently rely on a
finite-state infastructure that does not fully support
them (Appendix D). Thus, our current implemen-
tation enforces another closure property on W: if
w ∈ W , then h(w) c ∈ W for every c ∈ Σ′. This
ensures that failure arcs are unnecessary at all states
for just the same reason that they are unnecessary at
ε: every state now has explicit outgoing arcs for all
symbols in Σ′.

This slows down our current PEP implementa-
tion, potentially by a factor of O(|Σ|), because it
means that adding the abc feature forces us to con-
struct an ab state with outgoing arcs for all charac-
ters in Σ, rather than outgoing arcs for just c and φ.
By constrast, there is no slowdown for n-gram EP,
because then W already has the new closure prop-
erty. Our current experiments therefore underesti-
mate the speedup that is possible with PEP.

We expect a future implementation to support fail-
ure arcs; so in the following sections, we take care to
give constructions and algorithms that handle them.

11The number of arcs is a good measure of the size of the
encoding. The worst-case runtime of our finite-state operations
is generally proportional to the number of arcs. The number of
states |H| is smaller, and so is the number of failure arcs, since
each state has at most one failure arc.

B.6 W and A parameterizations are equivalent
Given W (without θ), we can construct the un-
weighted FSAA exactly in the section above, except
that we omit the weights. How do we then find θ?
Recall that our optimization methods (section 6) ac-
tually tune parameters θA associated with the arcs of
A. In this section, we explain why this has the same
effect as tuning parameters θW associated with the
substrings inW .

Given a log-linear distribution q defined by theW
features with a particular setting of θW , it is clear
that the same q can be obtained using the A features
with some setting of θA. That is essentially what the
previous section showed: for each arc or final state
a in A, take θAa to be the log of a’s weight under the
construction of the previous section.

The converse is also true, provided thatW = W .
That is, given a log-linear distribution q defined by
theA features with a particular setting of θA, we can
obtain the same q using the W features with some
setting of θW . This is done as follows:

1. Produce a weighted version of A such that the
weight of each arc or final state a is expθAa .

2. Modify this WFSA such that it defines the same
q function but all φ arcs have weight 1.12 This
can be done by the following “weight push-
ing” construction, similar to (Mohri, 2000). For
each state h, let kh > 0 denote the product
weight of the maximum-length path from h la-
beled with φ∗.13 Now for every arc, from some
h to some h′, multiply its weight by kh′/kh.
This preserves the weight of all accepting paths
in the WFSA (or more precisely, divides them
all by the constant kh0 where h0 is the initial
state), and thus preserves the distribution q.

3. For each w ∈ W , let k(w) denote the modi-
fied weight of the ordinary arc associated with
w in the topology. Recall that the previous sec-
tion constructed these arc weights k(w) from
θW . Reversing that construction, we put θWw =

12Remark: Since this is possible, we would lose no generality
by eliminating the features corresponding to the φ arcs. How-
ever, including those redundant features may speed up gradient
optimization.

13Such paths always have finite length in our topology (pos-
sibly 0 length, in which case kh = 1).

log k(w) − log k(w′), where w′ is the longest
proper suffix of w that appears inW . If there is
no such suffix, we put θWw = log k(w).

So we have seen that it is possible to convert back
and forth between θW and θA. Hence, the familyQ
that is defined byA (as in section 3.4) is identical to
the familyQ that would have been defined byW (as
in section 3.3), provided thatW = W . It is merely
a reparameterization of that family.

Therefore, we can use the method of section 6 to
find our optimal distribution

argmin
q∈Q

D(p || q) (10)

In other words, we represent q by its θA parame-
ters rather than its θW parameters. We optimize q
by tuning the θA parameters. (It is not necessary to
actually convert back to θW by the above construc-
tion; we are simply showing the equivalence of two
parameterizations.)

B.7 Weighted and probabilistic FSAs are
equivalent

Section 6 gives methods for estimating the weights
θ associated with a WFSA A. In the experiments
of this paper, A is always derived from some W .
However, section 3.4 explains that our EP method
can be used with features derived from any arbitrary
A (e.g., arbitrary regular expressions and not just n-
grams). So we now return to that general case.

The gradient methods in section 6 search for arbi-
trary WFSA parameters. However, the closed-form
methods in that section appear at first to be more
restrictive: they always choose weights θ such that
ENCODE(θ) is actually a probabilistic FSA. In other
words, the weights yield “locally normalized” prob-
abilities on the arcs and final states of A (section 6,
footnote 6).

Definition of probabilistic FSAs. This property
means that at each state h 6= 2, the WFSA de-
fines a probability distribution over the next char-
acter c ∈ Σ′. Thus, one can sample a string from
the distribution qθ by taking a random walk on the
WFSA from the initial state to 2.

Unlike previous papers (Eisner, 2002; Cotterell et
al., 2014), we cannot simply say that the arcs from

state h are weighted with probabilities that sum to 1.
The difficulty has to do with failure arcs, which may
even legitimately have weight > 1.

The following extended definition is general
enough to cover cases where the WFSA may be
nondeterministic as well as having failure arcs.
This general definition may be useful in future
work. Even for this paper, A is permitted to be
nondeterministic—section 3.4 only requires A to be
unambiguous and complete.)

Define an augmented transition with signature
h
c/k
; h′ to be any path from state h to state h′, with

product weight k, that is labeled with a sequence in
φ∗c (where c ∈ Σ′), such that there is no path from h
that is labeled with a shorter sequence in φ∗c. This
augmented transition can be used to read symbol c
from state h.

We say that the WFSA is a probabilistic finite-
state acceptor (PFSA) if for each state h, the aug-
mented transitions from h have total weight of 1.

Note that one can eliminate failure arcs from a
WFSA by replacing augmented transitions with ac-
tual transitions. However, that would expand the
WFSA and enlarge the number of parameters. Our
goal here is to discuss local normalization within
machines that retain the compact form using failure
arcs.

Performing local normalization. We now claim
that restricting to PFSAs does not involve any loss
of generality.14 More precisely, we will show that
any WFSA that defines a (possibly unnormalized)
probability distribution, such as ENCODE(θ), can be
converted to a PFSA of the same topology that de-
fines a normalized version of the same probability
distribution. This is done by modifying the weights
as follows.

For every state h of the WFSA, define the back-
ward probability β(h) to be the total weight of all
suffix paths from h to 2. Note that if h0 is the initial
state, then β(h0) is the WFSA’s normalizing con-
stant Zθ, which is finite by assumption.15 It follows
that β(h) is also finite at any state that is reachable

14Eisner (2002) previously pointed this out (in the setting of
WFSTs rather than WFSAs). However, here we generalize the
claim to cover WFSAs with failure arcs.

15Our PFSA will define a normalized distribution, so it will
not retain any memory of the value Zθ .

from the initial state (assuming that all arc weights
are positive).

One can compute β(h) using the recurrence
β(h) =

∑
i ki · β(hi) where i ranges over the aug-

mented transitions from h and the ith augmented

transition has signature h
ci/ki; hi. As the base case,

β(2) = 1. This gives a linear system of equations16

that can be solved for the backward probabilities.
The system has a unique solution provided that the
WFSA is trim (i.e., all states lie on some accepting
path).

It is now easy to modify the weights of the ordi-

nary arcs. For each ordinary arc h
c/k→ h′, change the

weight to k·β(h′)
β(h) .

Finally, consider each failure arc h
φ/k−→ h′.

Let k′ =
∑

i ki · β(hi), where i ranges over
the “blocked” augmented transitions from h′—those
that cannot be taken after this failure arc. The ith
augmented transition has signature h′

ci/ki; hi, and
is blocked if ci ∈ Σ′ can be read directly at h. It
follows that the paths from h′ that can be taken after
this failure arc will have total probability 1− k′

β(h′) in
the new PFST. Change the weight of the failure arc
to k·β(h′)

β(h) / (1 − k′

β(h′)). As a result, the total prob-
ability of all suffix paths from h that start with this
failure arc will be k·β(h′)

β(h) as desired.

When to use the above algorithms. For working
with approximate distributions during EP or PEP, it
is not necessary to actually compute backward prob-
abilities on parameterized versions of A or convert
these WFSAs to PFSA form. We are simply show-
ing the equivalence of the WFSA and PFSA param-

16For greater efficiency, it is possible to set up this system of
equations in a way that is as sparse as the WFSA itself. For
each state h, we constrain β(h) to equal a linear combination
of other β values. For a state with just a few ordinary arcs plus
a failure arc, we would like to have just a few summands in this
linear combination (not one summand for each c ∈ Σ′).

The linear combination includes a summand kj · β(hj) for

each ordinary arc h
cj/kj−→ hj . It also includes a summand

k · β(h′) for each failure arc h
φ/k−→ h′. However, we must

correct this last summand by recognizing that some augmented
transitions from the backoff state h′ cannot be taken after this
failure arc. Thus, the linear combination also includes a cor-
rective summand −k · ki · β(hi) for each augmented transition

h′
ci/ki; hi that is “blocked” in the sense that ci ∈ Σ′ can be

read directly at h.

eterizations.
Even so, these are fundamental computations for

WFSAs. They are needed in order to compute a
WFSA’s normalizing constantZθ, to compute its ex-
pected arc counts (the forward-backward algorithm),
or to sample strings from it.

Indeed, such computations are used in section 6,
though they are not applied to A but rather to other
WFSAs that are built by combining A with the dis-
tribution p that is to be approximated. If these WF-
SAs contained failure arcs, then we would need the
extended algorithms above. This could happen, in
principle, if p as well as A were to contain failure
arcs.

B.8 Fitting PFSA parameters
In order to estimate a WFSA with given topology
A that approximates a given distribution p, the pre-
vious section shows that it suffices to estimate a
PFSA. Recall from section 3.1 that we are looking
for maximum-likelihood parameters.

Section 6 sketched a closed-form method for find-
ing the maximum-likelihood PFSA parameters. Any
string v ∈ Σ∗ has a single accepting path in A,
leading to an integer feature vector f(v) that counts
the number of times this path traverses each arc of
A (including the final EOS arc as described in Ap-
pendix B.1). As section 6 explains, it is possible to
compute the expected feature vector Ev∼p[f(v)] us-
ing finite-state methods. Now, at each state h of A,
set the outgoing arcs’ weights to be proportional to
these expected counts, just as in section 6. The pa-
rameters θ are then the logs of these weights.

Unfortunately, this construction does not work
when A has failure arcs—which are useful, e.g., for
defining variable-order Markov models. In this case
we do not know of a closed-form method for find-
ing the maximum-likelihood parameters under a lo-
cal normalization constraint. The difficulty arises
from the fact that a single arc (ordinary arc or fail-
ure arc) may be used as part of several augmented
transitions. The constrained maximum-likelihood
problem can be formulated using the method of La-
grange multipliers, which leads to an elegant system
of equations. Unfortunately, this system is not lin-
ear, and we have not found an efficient way to solve
it exactly. (Using iterative update does not work be-
cause the desired fixpoint is unstable.)

To rescue the idea of closed-form estimation, we
have two options. One is to eliminate failure arcs
from A, which expands the parameter set and leads
to a richer family of distributions, at some compu-
tational cost. Our current experiments do this for
reasons explained in Appendix B.5.

The other option is to apply a conventional ap-
proximation from backoff language modeling. Con-
sider a backoff trigram model. At the state b, it is
conventional to estimate the probabilities of the out-
going arcs c according to the relative counts of the
bigrams bc. This is an approximation that does not
quite find the maximum-likelihood parameters: it ig-
nores the fact that b is a backoff state, some of whose
outgoing transitions may be “blocked” depending on
how b was reached. For example, some tokens of bc
are actually part of a trigram abc, and so would be
read by the c arc from ab rather than the c arc from
b. However, the approximation counts them in both
contexts.

It is straightforward to generalize this approxima-
tion to any A topology with φ arcs (provided that
there are no cycles consisting solely of φ arcs). Sim-
ply find the expected counts Ev∼p[f(v)] as before,
but using a modified version of A where the φ arcs
are treated as if they were ε arcs. This means that A
is no longer unambiguous, and a single string v will
be accepted along multiple paths. This leads to the
double-counting behavior described above, where
the expected features count both ordinary paths and
backoff paths.

As before, at each state h of A, set the outgoing
arcs’ weights to be proportional to these (inflated)
expected counts.

Finally, because the semantics of φ results in
blocked arcs, we must now adjust the weights of the
failure arcs so that the augmented transitions from
each state will sum to 1. Mark each failure arc as
“dirty,” i.e., its weight has not yet been adjusted. To

“clean” the failure arc h
φ/k→ h′, divide its weight

by 1− k′ where k′ is the total weight of all blocked
augmented transitions from h′. When computing the
weight of an augmented transition from h′, it is nec-
essary to first clean any failure arcs that are them-
selves part of the augmented transition. This recur-
sive process terminates provided that there are no
φ-cycles.

B.9 Greedily growingW

Section 6.1 sketches a “closed-form with greedy
growing” method for approximately minimizing the
objective (3), where Ω(θ) is given by (8).

The method is conceptually similar to the active
set method. Both methods initializeW ⊇ {ε, BOS},
and then repeatedly expand the currentW with new
strings (yellow nodes in Figure 2) that are rightward
extensions of the current strings (green nodes).17

The active set method relies on a proximal gradi-
ent step to update the weights of the yellow nodes.
This also serves to select the yellow nodes that are
worth adding—we remove those whose weight re-
mains at 0.

In contrast, the closed-form method updates the
weights of the yellow nodes by adding them to W
and running the closed-form estimation procedure
of Appendix B.8. This procedure has no structured-
sparsity penalty, so it is not able to identify less use-
ful nodes by setting their weights to 0. As an al-
ternative, it would be reasonable to identify and re-
move less useful nodes by entropy pruning (Stolcke,
1998), similar to the split-merge EM procedure of
Petrov et al. (2006). At present we do not do this.
Rather, we use a heuristic test to decide whether to
add each yellow node in the first place.

Our overall method initializes W and then enu-
merates strings w ∈ BOS?Σ∗EOS? in a heuristic or-
der. We add w to W if we estimate that this will
improve the objective. Every so often, we evaluate
the actual objective using the current W , and test
whether it has improved since the last evaluation. In
other words, has it helped to add the latest batch of
yellow strings? (Our current implementation uses
batches of size 20.) If not, then we stop and return
the current parameters. Stopping means that the av-
erage entropy reduction per newly added string w
has diminished below the penalty rate λ in (3).

Enumerating strings. We take care to ensure that
W remains closed under prefixes. A step of enu-
meration consists of popping the highest-priority el-
ementw from the priority queue. Whenever we elect
to add a string w toW (including when we initialize

17We require BOS ∈ W only so that we can extend it right-
ward into BOSa, BOSab, etc. When constructing a WFSA,
Appendix B.3 will remove BOS fromW to obtainW .

W by adding its initial members), we enqueue all
possible rightward extensions wc for c ∈ Σ′.

Our strategy is to approximate p by learning
nonzero feature weights for its most common sub-
strings first. So the priority of w is e(w)

def
=

Ev∼p[fw(v)], the expected count of the substring w.
For simplicity, let us assume that p is given by an

ε-free WFSA. At the start of our method, we run the
forward-backward algorithm on p to compute α(s)
and β(s) for each state s of this WFSA. α(s) is the
total probability of all prefix paths from the initial
state h0 to s, while β(s) is the total probability of
all suffix paths from s to 2. Since p may be cyclic,
it is necessary in general to solve a linear system
to obtain these values (Eisner, 2002). We set Z =
α(h0), the normalizing constant of p.

We need to be able to compute the priority of a
string when we add it to the queue. To enable this,
the entry forw on the priority queue also maintains a
map mw that is indexed by states s of the WFSA for
p. The entry mw[s] is the total weight of all prefix
paths that reach state s on a string with suffix w.18

(The key s may be omitted from the map if there
are no such paths, i.e., if mw[s] = 0.) From mw,
we can easily compute the priority of w as e(w) =∑

smw[s] ·β(s)/Z. When adding w toW causes us
to enqueue wc, we must create the mapmwc. This is
derived from mw by setting mwc[s

′] =
∑

smw[s] ·
(total weight of all augmented transitions s

c/k
; s′).

The base case mε is given by mε[s] = α(s). The
base case mBOS is given by mBOS[h0] = 1.

Testing whether to add w. When we pop w from
the priority queue, is it worth adding to W? Re-
call that we have already computed e(w) as the pri-
ority of w. Adding w means that we will be able
to model the final character n(w) in the context of
the history h(w) without backing off. Under the
methods of the previous section, this will change (3)
by roughly e(w) · (logPold − logPnew) + λ, where
Pnew = e(w)/e(h(w)) and Pold = e(w′)/e(h(w′)),
where w′ is the longest proper suffix of w that is cur-

18Ordinarily, this means all paths of the form h0
Σ∗w−−→ s.

However, if w has the form BOSw′, then it means all paths of

the form h0
w′−→ s, meaning that that w′ must match at the start

of the path.

rently inW .19 Our heuristic is to add w if this esti-
mated change is negative (i.e., an improvement). In
other words, the increase in the model size penalty
λ · |W| needs to be outweighted by a reduction in
perplexity for the last character of w.

Evaluating the objective. Given W , we could
evaluate the objective (3) using the construction
given in section 6. This would require estimating
θ and constructing ENCODE(θ) using the methods
of Appendix B.8.

Fortunately, it is possible to use a shortcut, since
we are specifically doing variable-order Markov
modeling and we have already computed e(w) for
all w ∈ W . If we estimate the parameters using the
backoff language model technique suggested in Ap-
pendix B.8, then the minimization objective is given
by a constant plus

−

(∑
w∈W

e(w) ·
(

log
e(w)

e(h(w))
(11)

− log
e(w′)

e(h(w′))

))
+ |W|

where w′ denotes the longest proper suffix of w that
is also inW .20

The summand for w claims that for each of
the e(w) instances of w, the model will estimate
the probability of the last character of w using
e(w)/e(h(w)). This summand overrides the w′

summand, which incorrectly claimed to estimate
the same e(w) cases using the backed-off estimate
e(w′)/e(h(w′)). Thus, the w summand subtracts
the backed-off estimate based on w′ and replaces it
with its own estimate based on w. Of course, this
summand may be corrected in turn by even longer
strings inW .

In principle, one can maintain (11) incrementally
as W changes. Adding a new string to W will add
a new term, and it may modify old terms for which
the new string replaces the old value of w′.

Making do without failure arcs. Since our cur-
rent implementation cannot use failure arcs (see Ap-
pendix B.5), we cannot extend w ∈ W by adding

19In the case w′ = ε, we take Pold = 1/|Σ′|, the 0-gram
probability of an unknown character.

20The summand for w = εmust be handled as a special case,
namely e(w) · log(1/|Σ′|).

a single string wc for c ∈ Σ′. We must add all of
these strings at once. This triggers a slight change
to the architecture. When we add w to W , we do
not enqueue all extensions wc to the priority queue.
Rather, we enqueue w itself, with priority e(w).
This now represents a “bundle of extensions.” When
we pop w, we decide whether to add the full set of
extensions wc to W , by estimating the total benefit
of doing so.

B.10 Making do without d-tape WFSAs

Footnote 5 noted that it is possible to reformulate
any factor graph using only factors of degree 2. This
follows a standard transformation that reformulates
any problem in constraint satisfaction programming
(CSP) using only binary constraints.

General construction for factor graphs. To
eliminate a factor F that depends on variables
V1, . . . , Vd, one can introduce a new variable VF
whose value is a d-tuple. VF is related to the origi-
nal variables by binary factors that ensure that VF is
specifically the d-tuple (V1, . . . , Vd). (That is, the
first component of VF must equal V1, the second
must equal V2, etc.) The old factor F that exam-
ined d variables is now replaced by a unary factor
that examines the d-tuple.

Construction in the finite-state case. In the case
of graphical models over strings, a factor of degree
d is a d-tape weighted finite-state machine. To elim-
inate a factor F of degree d > 2 from the factor
graph, introduce a new variable VF that encodes a
path in the machine F . Since a path is just a se-
quence of arcs, the value of this variable is a string
over a special alphabet, namely the set of arcs in F .

Let V1, . . . , Vd denote the neighbors of F , so that
a path in F accepts a tuple of strings (v1, . . . , vd).
For each 1 ≤ i ≤ d, introduce a new binary factor
connected to VF and Vi. This factor scores the pair
of strings (vF , vi) as 1 or 0 according to whether vi
is the ith element of the tuple accepted by the path
vF .

Finally, replace F with a new unary factor F ′ con-
nected to VF . This unary factor scores an arc se-
quence vF as 0 if vF is not a path from the initial
state of F to a final state of F . Oherwise it returns
the weight of vF as an accepting path in F .

n-gram weight level n-gram weight level
z -0.05 1 ip 0.88 2
iz 0.0 2 Sip 0.85 3
p 0.84 1 tSip 0.84 4

Table 1: Some of the active n-gram features in PEP’s be-
lief about the underlying representation of the word chip.
The correct answer is tSip.

Implementation of the new finite-state fac-
tors.21 The binary factor connected to VF and Vi
implements a simple homomorphism. (Specifically,

if an arc a of F is labeled as
c1:c2:···:cd/k−−−−−−→, then

this binary factor always maps the symbol a to the
string ci.) Therefore, this binary factor can be imple-
mented as a 1-state deterministic finite-state trans-
ducer.

The unary factor F ′ can be implemented as a
WFSA that has the same topology as F , the same
initial and final states, and the same weights. Only
the labels are different. If an arc a of F is labeled
as

c1:c2:···:cd/k−−−−−−→, then the corresponding arc a′ in F ′

is labeled as
a/k−→.

C Further Results

Table 1 illustrates a sample of the n-grams that PEP
pulls out when approximating one belief.

Figures 6 and 7 compare the different algorithms
from section 6.

D Code Release

Code for performing EP and PEP as approximations
to loopy BP will be released via the first author’s
website. This implementation includes a generic
library for our automaton constructions, e.g. con-
struction of variable length n-gram machines and
minimization of the KL-divergence between two
machines, built on top of PyFST (Chahuneau, 2013),
a Python wrapper for OpenFST (Allauzen et al.,
2007).

While OpenFST supports failure and default
arcs,22 PyFST currently does not. We hope to re-
solve this in future, for reasons discussed in Ap-
pendix B.5.

21Because we are now working with multi-tape machines, we
drop Appendix B.1 and assume the usual machine format.

22http://www.openfst.org/twiki/bin/view/
FST/FstAdvancedUsage#Matchers

100 200 300 400 500
101

102

103

104

105

T
im

e
(s

ec
on

ds
,l

og
-s

ca
le

)

Trigram EP (Closed Form)
Baseline
Penalized EP (Closed Form)
Bigram EP (Closed Form)
Unigram EP (Closed Form)

100 200 300 400 500
101

102

103

104

105

100 200 300 400 500
101

102

103

104

105

100 200 300 400 500

German

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

C
ro

ss
-E

nt
ro

py
(b

it
s)

100 200 300 400 500

English

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

100 200 300 400 500

Dutch

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Figure 6: A version of Figure 3 that uses the closed-form methods to estimate θ, rather than the gradient-based
methods. The same general pattern is observed.

100 200 300 400 500
101

102

103

104

105

T
im

e
(s

ec
on

ds
,l

og
-s

ca
le

)

Trigram EP
Penalized EP
Bigram EP

100 200 300 400 500
101

102

103

104

105

100 200 300 400 500
102

103

104

105

100 200 300 400 500

German

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

C
ro

ss
-E

nt
ro

py
(b

it
s)

100 200 300 400 500

English

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

100 200 300 400 500

Dutch

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Figure 7: A comparison of the key curves from Figures 3 and 6. The dotted lines show the gradient-based meth-
ods, while the solid lines show the closed-form methods. The closed-form method is generally a bit faster, and has
comparable accuracy.

