Unsupervised Evaluation Metrics and Learning Criteria for Non-Parallel Textual Transfer SUPPLEMENTARY MATERIAL

1 Textual Transfer Model

1.1 Summary

We iteratively update (1) θ_{D_0} , θ_{D_1} , $\theta_{D'_0}$, and $\theta_{D'_1}$ by gradient descent on L_{adv_0} , L_{adv_1} , $L_{adv'_0}$, and $L_{adv'_1}$, respectively, and (2) θ_E , θ_G by gradient descent on $L_{total} = \lambda_1 L_{rec} + \lambda_2 L_{para} + \lambda_3 L_{cyc} + \lambda_4 L_{lang} - \lambda_5 (L_{adv_0} + L_{adv_1}) - \lambda_6 (L_{adv'_0} + L_{adv'_1})$.

1.2 Full Algorithm

Please refer to Algorithm 1.

2 Tables and Plots in Results

Figures 2a and 2b show the learning trajectories for the Literature dataset, which show similar trends as those for Yelp. While the plots for the two datasets appear different from an initial glance, comparing similarities at fixed error rates and comparing perplexities at fixed similarities reveals that the results largely resemble those for the Yelp dataset. The baseline M0 struggles on the Literature dataset. The particularly low perplexity for M0 does not indicate fluent sentences, but rather the piecing together of extremely common words and phrases.

Figure 1: Met by Sim using the Literature dataset

Al	gorithm 1: Training procedure
1 P	retrain language models LM_0 and LM_1 to be
	used in language modeling loss L_{lang} .
2 I1	nitialize parameters $(\theta_E, \theta_G, \theta_{D_0}, \theta_{D_1}, \theta_{D'_0}, \theta_{D'_1})$.
3 W	while losses have not converged do
4	Sample mini-batch $\{\mathbf{x}_t^{(i)}\}_{i=1}^k$ from \mathbf{X}_t , and
	obtain transferred sentences $\{\widetilde{\mathbf{x}}_{t}^{(i)}\}_{i=1}^{k}$ by running the decoder $G(\mathbf{y}_{1-t}, E(\mathbf{x}_{t}, \mathbf{y}_{t}))$, for t = 0, 1.
5	Get content representations
	$\mathbf{z}_{t}^{(i)} = E(\mathbf{x}_{t}^{(i)}, \mathbf{v}_{t}), \text{ and } \widetilde{\mathbf{z}}_{t}^{(i)} = E(\widetilde{\mathbf{x}}_{t}^{(i)}, \mathbf{v}_{1-t})$
	for $t = 0, 1, \forall i$, where we use $\mathbf{x}^{(i)}$ as inputs
	for the RNNs and y_{1-t} as initial hidden
	states for the RNNs.
6	Obtain probability distribution of the
	back-transferred sentences $\{\widetilde{\widetilde{\mathbf{x}}}_{t}^{(i)}\}_{i=1}^{k}$
	through decoder $G(\mathbf{y}_t, E(\widetilde{\mathbf{x}}_t, \mathbf{y}_{1-t}))$, for
	$t = 0, 1, \forall i.$
7	Unfold G from $(\mathbf{y}_t, \mathbf{z}_t^{(i)})$ (i.e., by using
	$(\mathbf{y}_t, \mathbf{z}_t^{(i)})$ as initial hidden state of the RNN),
	and feed in $\mathbf{x}_{t}^{(i)}$ to obtain $\mathbf{h}_{t}^{(i)}$; and unfold G
	from $(\mathbf{v}_{1-t}, \mathbf{z}_{t}^{(i)})$, and feed in previous
	output probability distributions to obtain
	$\widetilde{\mathbf{h}}_{t}^{(i)}$. This step is done for $t = 0, 1, \forall i$.
8	Compute L_{rec} by (1); Compute L_{adv_0} and
	L_{adv_1} of the first discriminator by (2), and
	$L_{adv'_0}$ and $L_{adv'_1}$ of the second discriminator
	by (6); Compute L_{cyc} by (3); Compute
	L_{para} by (4); Compute L_{lang} by (5).
9	Update $\theta_{D_0}, \theta_{D_1}, \theta_{D'_0}$, and $\theta_{D'_1}$ by gradient
	descent on $L_{adv_0}, L_{adv_1}, L_{adv'_0}$, and $L_{adv'_1}$,
4.0	Indete A A by gradient descent on
10	Update θ_E , θ_G by gradient descent on
	$\begin{bmatrix} L_{total} - \\ \lambda_1 I_1 + \lambda_2 I_2 + \lambda_2 I_2 + \lambda_1 I_2 \end{bmatrix}$
	$\lambda_1 L_{rec} + \lambda_2 L_{para} + \lambda_3 L_{cyc} + \lambda_4 L_{lang}$ $\lambda_5 (L_{adv_0} + L_{adv_1}) - \lambda_6 (L_{adv'} + L_{adv'}).$
11 e	nd
	-

In our analysis, we used Sim as the primary metric for semantic preservation. However, if we were to use Met instead (where Met is computed by METEOR scores between original sen-

	$Acc \approx 0.800$					$Sim \approx 0.800$				
Telp	$Acc(\uparrow)$	$Sim(\uparrow)$	$Met(\uparrow)$	$PP(\downarrow)$	$GM(\uparrow)$	Acc	Sim	Met	PP	GM
M0: Shen et al. (2017)	0.818	0.719	0.165	37.3	10.0	0.591	0.793	0.305	56.1	0.00
M1: M0+para	0.819	0.734	0.196	26.3	14.2	0.704	0.798	0.288	31.0	16.3
M2: $M0+cyc$	0.813	0.770	0.271	36.4	18.8	0.795	0.801	0.312	37.4	20.8
M3: M0+cyc+lang	0.807	0.796	0.257	28.4	21.5	0.792	0.802	0.272	28.7	21.4
M4: M0+cyc+para	0.798	0.783	0.275	39.7	19.2	0.794	0.799	0.320	39.4	20.3
M5: M0+cyc+para+lang	0.804	0.785	0.254	27.1	20.3	0.781	0.794	0.288	28.0	20.2
M6: M0+ cyc +2 d	0.805	0.817	0.322	43.3	21.6	0.834	0.807	0.321	47.7	21.4
M7: M0+ <i>cyc</i> + <i>para</i> + <i>lang</i> +2 <i>d</i>	0.818	0.805	0.288	29.0	22.8	0.830	0.799	0.281	27.8	22.6
T • 4	$Acc \approx 0.700$					$\mathrm{Sim} \approx 0.750$				
Literature	Acc	Sim	Met	PP	GM	Acc	Sim	Met	PP	GM
M0: Shen et al. (2017)	0.694	0.728	0.080	22.3	8.81	n/a	n/a	n/a	n/a	n/a
M1: M0+para	0.702	0.747	0.108	23.6	11.7	0.678	0.749	0.106	30.8	10.7
M2: $M0+cyc$	0.692	0.781	0.194	49.9	12.8	0.778	0.754	0.109	55.0	14.0
M3: M0+cyc+lang	0.698	0.754	0.089	39.2	12.0	0.698	0.754	0.089	39.2	12.0
M4: M0+cyc+para	0.702	0.757	0.117	33.9	12.8	0.719	0.756	0.112	29.7	14.0
M5: M0+cyc+para+lang	0.688	0.753	0.089	28.6	11.8	0.727	0.750	0.080	28.6	13.7
M6: $M0+cyc+2d$	0.704	0.794	0.274	63.2	12.8	0.775	0.758	0.115	55.1	14.3
M7: M0+cyc+para+lang+2d	0.706	0.768	0.142	49.0	12.8	0.749	0.756	0.121	45.6	14.1

Table 1: Results at fixed levels of post-transfer classification accuracy (Acc) and semantic similarity (Sim). Under similar Acc, the best Sim and Met are in bold. Under similar Sim, the best PP is in bold. In both tables, the best GM scores are also in bold. Here, *para* = paraphrase loss, *cyc* = cyclic loss, *lang* = language modeling loss, and 2d = two pairs of discriminators. Cells with n/a indicate that the model never reaches the corresponding Acc or Sim.

tence and transferred sentence, averaged over sentence pairs), the plots and our conclusions would be largely unchanged. Using the Literature dataset as an example, Figure 1 shows that the correlation between Met and Sim is very large. Specifically, we randomly sample 200 transferred corpora generated using different models, and generated at different times during training. We obtain Met and Sim of each of these 200 transferred corpora using techniques discussed in the main text. We thus have 200 data points, as shown in Figure 1.

3 Examples

Table 2 provides examples of textual transfer.

(a) Cosine similarity (Sim) by error rate $(1-{\rm Acc})$ for Literature.

(b) Perplexity (PP) by cosine similarity (Sim) for Literature.

Figure 2: Learning trajectories with selected models from Table 2 of main text. Metrics are computed on the development sets.

Model	Acc	Sim	PP	GM	Sentence	Style
Original	_				i got my car back and was extremely unhappy.	Negative
MO	0.818	0.719	37.3	10.0	i got my favorite loves and was delicious.	Positive
M7	0.818	0.805	29.0	22.8	i got my car back and was very happy.	Positive
Original					the mozzarella sub is absolutely amazing.	Positive
MO	0.818	0.719	37.3	10.0	the front came is not much better.	Negative
M7	0.818	0.805	29.0	22.8	the cheese sandwich is absolutely awful.	Negative
Original	0.010	0.000	2210		they are completely unprofessional and have no experience	Negative
MO	0.818	0 710	373	10.0	they are super fresh and well !	Positive
M7	0.818	0.719	20.0	22.8	they are very professional and have great service	Positive
	0.010	0.005	29.0	22.0	incy are very professional and have great service :	N C
Original	0.010	0.710	27.2	10.0	i would nonestly give this place zero stars if I could .	Negative
MU M7	0.818	0.719	37.3	10.0	i would definitely recommend this place from everyone again.	Positive
M/	0.818	0.805	29.0	22.8	I would definitely recommend this place all stars if I could .	Positive
Original					for all those reasons, we won't go back.	Negative
MO	0.818	0.719	37.3	10.0	for all of pizza, you do you go.	Positive
M7	0.818	0.805	29.0	22.8	for all those reviews, 1 highly recommend to go back.	Positive
Original		_		_	the owner was super nice and welcoming.	Positive
M0	0.818	0.719	37.3	10.0	the server was extremely bland with all.	Negative
M7	0.818	0.805	29.0	22.8	the owner was very rude and unfriendly.	Negative
Original					this is one of the best hidden gems in phoenix.	Positive
MO	0.818	0.719	37.3	10.0	this is one of the worst _num_ restaurants in my life .	Negative
M7	0.818	0.805	29.0	22.8	this is one of the worst restaurants in phoenix.	Negative
Original					i declined on their offer, but appreciated the gesture!	Positive
MO	0.818	0719	373	10.0	i asked on their reviews they are the same time !	Negative
M7	0.818	0.805	29.0	22.8	i paid for the refund, and explained the frustration !	Negative
Original	0.010	0.000	2210		it was a most astroordinary circumstance	Diakana
MO	0 604	0 728	22.2	0 0 1	it was a little deal of the world	Modern
M0 M2	0.094	0.720	22.5 40.0	0.01	it was a huge thing on the place	Modern
M2 M6	0.092	0.781	49.9	12.8	it was a most important effort over the relationship	Modern
	0.704	0.794	03.2	12.0		D' 1
Original	0.604	0.700			i conjure you, tell me what is the matter.	Dickens
MO	0.694	0.728	22.3	8.81	1 m sorry, 1 m sure 1 m going to be, but 1 was a little man.	Modern
M2	0.692	0.781	49.9	12.8	1 m telling you, tell me what's the unit.	Modern
Mb	0.704	0.794	63.2	12.8	1 am tening you, ten me what's the matter.	Modern
Original			_	_	a public table is laid in a very handsome hall for breakfast,	Dickens
onginar					and for dinner, and for supper.	Dienens
M0	0.694	0.728	22.3	8.81	the other of the man was a little, and then, and -person- 's	Modern
					eyes, and then -person	
M2	0.692	0.781	49.9	12.8	a little table is standing there for all, and for me,	Modern
					and for you.	
M6	0.704	0.794	63.2	12.8	a small table is placed in a very blue foolin for bleaklast,	Modern
Original					does n't she know it's dangerous for a young woman to	Modern
MO	0.604	0 729	22.2	0.01	go off by herself ?	Distance
MU	0.094	0.728	22.3	ð.ð1	uo n t nave been a nute of a man of your own ?	Dickens
M2	0.692	0.781	49.9	12.8	r in t she know it is dangerous for a fittle wonnah to	Dickens
					go our mom us : does n't she know it 's a dangerous act for a young lady	
M6	0.704	0.794	63.2	12.8	to go off hy herself?	Dickens
Omi circal					it which are a chout my new story of and a bill?	Madam
Uriginal	0.604	0 700		0 0 1	it is not a little man	Dialarra
MO	0.094	0.728	40.0	0.01	it is not a fittle fillall.	Dickens
M2	0.692	0.704	49.9	12.8	it appears to me about my new strength and desire.	Dickens
Mb	0.704	0.794	03.2	12.8	it appears to me my new strength and desire.	Dickens

Table 2: Textual transfer examples

References

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2017. Style transfer from non-parallel text by cross-alignment. In *Advances in Neural Information Processing Systems 30*, pages 6833–6844. Curran Associates, Inc.