
Supplemental material for: Revisiting the Evaluation of Theory of Mind
through Question Answering

Matthew Le Y-Lan Boureau
Facebook AI Research

New York, NY
{mattle,ylan,maxn}@fb.com

Maximilian Nickel

1 Generating the ToMi dataset

The following three pseudo-code algorithms describe how ToMi is created. Alg. 1 describes how a
balanced dataset is produced, assuming access to a story generator, by generating stories with rejection
until there are the same number for each of the three types considered (true belief, false belief, second
order false belief). The oracle that determines the type of the story is obtained by keeping track of all
characters’s beliefs as the story is being generated. The next two algorithms describe the story generator.
Alg. 2 shows how the core story body is created. Alg. 3 shows how random distractor statements are
introduced, with both the comings and goings of a distractor agent, and irrelevant statements about
containers and objects.

Algorithm 1: Produces balanced set of stories among the three target types (true belief, false
belief, second order false belief), with a story generator (generateStory) and an oracle that knows
the type of a story (typeStory)
Data: target number of stories of each type N
Result: set of stories S of size 3 ∗N
n[tb], n[fb], n[sofb]← (0, 0, 0) ;
S ← {};
while min(n[tb], n[fb], n[sofb]) < N do

newStory← generateStory;
ts← typeStory(newStory);
if n[ts] < N then

n[ts] += 1;
S ← S+ newStory;

end
end

Algorithm 2: Core story generation
Data: world with locations, containers, objects, agents; oracle tracking where things are
Result: story s
s← ””;
(l, ldistr)← two random locations with no replacement;
(o, c1, c2)← random object in location l, container of o, container in l 6= c1 ;
(a1, a2)← two random agents with no replacement;
(Sally, Anne)← shuffle (a1, a2) ;
(a1, a2)← shuffle(a1, a2);
s += ”a1 enters l”;
s += ”a2 enters l”;
s += ”o is in c1”;
nLocChanges← randomChoice(1, 2);
if nLocChanges == 1 then

s1 ← ”Anne moves o from c1 to c2”;
s2 ← ”Sally exits l”;
(s1, s2)← shuffle(s1, s2);
s += s1;
s += s2;
return s // Single exit

end
// More than one agent move ;
(act1, act2, act3)← shuffle(moveobj , changeloc, changeloc);
if act1 == moveobj then

s += ”Anne moves o from c1 to c2”;
else

s += ”Sally exits l”;
end
if act2 == moveobj then

s += ”Anne moves o from c1 to c2”;
else if Sally in l then

s += ”Sally exits l”;
else

s += ”Sally enters randomChoice(l, ldistr)”
end
if act3 == moveobj then

s += ”Anne moves o from c1 to c2”;
else

if flipCoin == tail then
s += ”Anne exits l”;

end
s += ”Sally enters randomChoice(l, ldistr)”

end

Algorithm 3: Distractor agent entries and distractor statements
Data: main story s with location l, distractor location ldistr, agents (a1, a2); set of world

containers C, set of world objects O; distractor agent a3
Result: updated story s
nDistractorEntrances← randomChoice(0, 1, 2);
insertionIndices← random choice of nDistractorEntrances from 1 to length(s);
if nDistractorEntrances > 0 then

s1 ← ”a3 enters randomChoice(l, ldistr)”;
s← insert s1 in s at min index of insertionIndices;

end
if nDistractorEntrances > 1 then

s2 ← ”a3 exits a3’s current location”;
s← insert s2 in s at max index of insertionIndices;

end
nDistractorStatements← randomChoice(0, 1, 2);
insertionIndices← random choice of nDistractorStatements from 1 to length(s);
for i← 1 to nDistractorStatements do

a← randomChoice(a1, a2, a3);
thing ← randomChoice(C ∪O);
s1 ← ”a (likes|dislikes|loves|hates) the thing”;
s← insert s in s at i-th index of insertionIndices;

end

