
A Appendices

A.1 Derivation of posterior alignment

Figure 7: Generation Process of yt. With probability
pgen, it fuses the source encodings to ct and decodes
from pvocab. With probability (1 − pgen)at,i, it pays
attention to a specific hi and decodes from δ(yt|xi). In
our model, δ(yt|xi) goes beyond excact copy and can
decode different variations of xi.

Figure 7 illustrates the generation process of
pointer generators. According to the process, we
can compute the posterior probability that yt is
generated from the generation mode by applying
the Bayes’ theorem:

posterior(pgen|yt) =
pgenpvocab(yt)

p(yt)

p(yt) = pgenpvocab(yt) + (1− pgen)ppoint(yt)

ppoint(yt) =
∑
i

at,iδ(yt|xi)

The posterior probability that yt can be generated
by aligning to the token xi is:

posterior(At,i|yt) =
(1− pgen)at,iδ(yt|xi)

p(yt)
(7)

We assume in the generation mode, the alignment
probability is defined by the attention weight.
The final posterior probability that a yt should be
aligned to xi is then the weighted alignment prob-
ability from the generation and point mode:

p(yt, xi) = posterior(pgen|yt)at,i + posterior(At,i|yt)

A.2 Statistics of dataset
Tab 7 displays the statistics of the three dataset.
The gigaword test set is cleaned as in Chopra et al.
(2016) after removing pairs with empty titles in the
original test data provided by Rush et al. (2015).
We also remove unreachable and empty article-
title pairs from the original XSum paper, the re-
sulting dataset is slightly smaller.

Dataset train/valid/test article/summary
CNN/DM 287,226/13,368/11,490 780.7/56.3
Gigaword 3,803,957/8000/1951 31.3/8.3
XSum 203,519/11,296/11,298 431.1/23.3

Table 7: Dataset statistics. Number of train/valid/test
sample and average tokens for the article/summary pair

A.3 Details of the setting

We adopt the general dot product function (Lu-
ong et al., 2015) to compute the attention score
function as it shows superior performance and al-
lows better parallerization. The relation embed-
ding r(dt, hi) is designed as a two-layer percep-
tron with a residual connection between them.

Eq 3 is different from See et al. (2017). We do
not condition on the decoder input as in See et al.
(2017) since this information has already been in-
cluded in dt. Empirically we find additionally con-
ditiononig on the decoder input did not bring im-
provements.

We eliminate the OOV problem by using the
bpe tokenization. The pointer generator can
thereby work only on digitized word ids, which
largely speeds up training since the string match-
ing algorithm is time-consuming on GPUs. In our
experiment, the training time for pointer genera-
tors is roughly the same as seq2seq baselines, in
contrast with See et al. (2017) where pointer gen-
erators doubled the per-epoch training time. The
running overhead for GPG models is around 20%-
30% and a larger k value would take more time
to train. The word embedding size is set as 300
for Gigaword and 100 for the others. The embed-
ding matrix is initialized with the pretrained Glove
vectors (Pennington et al., 2014) (Tokens that are
not included in the pretrained embeddings are ini-
tialized from the a standard Gaussian distribution).
In the training, the article/summary is truncated
to 80/40, 400/100 and 400/90 token for Giga-
word, CNN/DM and XSum respectively. All mod-
els are trained with the Adam optimizer (Kingma
and Ba, 2015) (lr = 1e−3, β1 = 0.9, β2 =
0.999,weight decay = 1.2e−6)7. Gradients are
clipped between [−2, 2]. The learning rate is re-
duced by an order of magnitude if the validation
loss degrades after two epochs. The training con-
tinues until the learinng rate drops under 1e−5. We
further add a drop-out layer with rate 0.3 for both
the encoder and decoder. All models are imple-

7See et al. (2017) suggests using AdaGrad, but we find
Adam performs better and converges faster in out setting.



CNN/DM Gigaword XSum
sum 11.34 12.32 19.72

diagonal 11.48 12.34 19.81
direct 15.98 12.42 22.35

Table 8: Test perplexity for different δ(yt|xi)

sum diagonal direct
precision 0.613 0.582 0.557

Table 9: Posterior alignment precision for different
choices of δ(yt|xi)

mented based on the PyTorch framework8.

A.4 Comparison of different δ(yt|xi)
In the paper, we compute δ(yt|xi) by summing
a learned relation embedding r(dt, hi) into −→xi
(sum). We compare it with the two other options
mentioned in the paper:

1. Replacing the summation with a more com-
plex diagonal transformation (diagonal):

y∗t,i = r1(dt, hi) · −→xi + r2(dt, hi) (8)

where ·means dot product. r1 and r2 are both
parameterized with multi-layer perceptrons.

2. Directly estimate from (dt, hi) regardless of
xi, similar to Eq. 2 in the generation mode
(only change the fused attention vector in
Eq. 1 into a specific hi) (direct):

y∗t,i = [dt ◦ hi]L (9)

For efficiency, we set k = 6 and train a pure
pointer model on all dataset (GPG-ptr). Table 8
lists the word perplexity evaluated on the test data.
The summation transformation achieve the lowest
perplexity over all dataset. For the more complex
diagonal transformation, it has another issue when
integrating the pointer into the GPG: It has more
parameters to train so that in the earlier training
stage, the model will tend to prefer the generation
mode, the ratio of turning on the point mode might
be squeezed and will never go up. The direct trans-
formation model performs well on the shorter Gi-
gaword dataset, but much worse on CNN/DM and
XSum. Table 9 further reports the alignment pre-

8https://pytorch.org/

CNN/DM Gigaword XSum
con 11.34 12.32 19.72
free 11.73 12.38 20.11

model 13.38 12.36 21.14

Table 10: Test perplexity for different Top-K options

cision score. The summation transformation out-
performs the others again. The direct transforma-
tion cannot model alignment very well because it
is not explicitly grounded on xi. For the more
complex diagonal transformation, the complexity
might make it easier to overfit the data and align
two words that are not well correlated.

A.5 Comparison of different top-K choices

Apart from the one mentioned in the paper which
picks tokens based on the similarity of the contex-
tualized word embedding (con), we compare two
more strategies for choosing the top-k candidates
to estimate the marginal likelihood.

1. Select top k source tokens based on the
context-free word embedding (free). Word
embeddings are updated in the training stage.

2. Select top-k source tokens with the top-
k attention weights assigned by the model
(model).

Following the same setting in the last section, we
report the test perplexity in Table 10. As can
be seen. Using the contextualized word embed-
ding to select the top-k candidates result in the
best performance. Again on the Gigaword dataset
with a shorter source text, the difference among
these three options is minor, but for CNN/DM
and XSum, picking the proper k tokens becomes
more challenging because of the increased source
length. For context-free embeddings, it cannot
differentiate same tokens appearing in different
places of the source text. For picking tokens based
on attention weights, the model might get mislead
by its own mistakes. Overall selecting source to-
kens based on the contextualized embedding of-
fers the safest way to estimate the marginal likeli-
hood.

A.6 Caveats

The novelty results for CNN/DM in Table 4 are
significantly lower than the ones reported in See
et al. (2017) (They report 65% novel sentences



for pointer generators while we have only 35%).
We assume the main reason is the repetition is-
sue. Their reports are based on models without
coverage penalty. We evaluate on the genera-
tions from their coverage-based pointer generator,
the proportion of novel 1,2,3-grams and sentences
is 0.05%, 2, 21%, 6.00% and 49.80% respectively,
also much lower than their reports. Even with cov-
erage, we find 24.3% of the generations from See
et al. (2017) still contain repeated tri-grams, while
it hardly happens for human references (Paulus
et al., 2018). Some novel tokens might come from
repeated generations in their report. The differ-
ence of vocabulary might also be part pf the rea-
son. After all, there are many issue that could lead
to the difference, we focus on comparing our im-
plementations under the same setting.

The values for the ground-truth summaries are
in the Table 4 slightly lower than the one reported
in See et al. (2017). We obtained their provided
text and rerun our script. The difference is less
than 0.2%. The tiny difference might come from
the tokenization and text normalization.


