
A Additional Notes on Data Preparation

we obtain a rating matrix of 265,905 users and
11,382 movies. We filter the data according to a
few criteria:
• users who watched less than 50 movies are fil-

tered out.
• moves which are watched less than 50 users are

filtered out.
• movies which are filmed before 1950 are filtered

out.
• movies whose average rates are less than 2 and

users who average rates are less than 2 are fil-
tered out.
We also remove some movie sets which are too

difficult or too easy to predict based on their dis-
tance scores. For example, we filter out movie sets
where the cosine similarity of the correct movie
and the averaged incorrect movies is less than
0.75. After filtering, the remaining data comprises
5,330 movies, rated by 65,181 users.

We tested different types of embedding fea-
tures such as movie IDs (i.e., MovieLens’s rat-
ings), movie text (i.e., Wiki-text), and knowledge
base features (e.g., director’s name). The movie
ID features turn out to be the best performing for
recommendation performance. After training, the
model finds reasonable close neighbors; for exam-
ple, for “Ice Age”, the model identifies “Shrek 2”,
“Shrek”, “Monsters Inc.”, and “Finding Nemo” as
close.

B Data Collection: Full Description

In our annotation interface, we provide action but-
tons for workers to click on in order to interact
with the system. When a button is clicked, the
corresponding system message is shown. For ex-
ample, if an expert clicks on a movie button to rec-
ommend that movie, the system displays a recom-
mendation message to the seeker, using a simple
template. Similarly, if a seeker clicks to accept or
reject the recommendation, a templated message
with the decision is automatically delivered to the
expert.

If an expert recommends the correct movie, a
seeker accepts the correctly recommended movie,
or a seeker rejects an incorrectly recommended
movie, they receive a reward (points, which can
translate into bonus money if enough points are
earned); otherwise, the system encourages them
to focus more on the task and get more points.
The amount of reward points awarded is calculated

based on the similarities between the average of
the seeker’s movie set and each candidate movie
in the expert’s set, using a softmax. The similar-
ity scores are calculated using the euclidean dis-
tance between movie embedding vectors (see Sec-
tion C).

Overall, a total of 1,034 unique workers created
9,125 dialogues, over a duration of 2.5 weeks.

C Supervised training: Details

This section gives more details about the super-
vised training phase.

Encoding textual inputs: Textual inputs are en-
coded differently for the dialogue context and for
the movie descriptions. The dialogue history con-
text ht for predicting utterance xt+1 comprises the
history of all previous utterances x1, · · · , xt. Each
utterance is encoded with an LSTM (Hochreiter
and Schmidhuber, 1997). The dialogue context is
then obtained by averaging over all utterances:

ht = AVG (LSTM(x1), . . . , LSTM(xt)) (9)

For the movies, we found that using bags of
words instead worked better. We encode each sen-
tence of a movie description as a bag of words,
and then average all the resulting representations
to obtain m j, the representation of the j-th movie:

E(m j) = AVG (BOW(m j)) for j ∈ 1..K (10)

Aligning dialogue context and movie descrip-
tions: we use dot-product attention(Chen et al.,
2017) between the dialogue context and each of
the movie descriptions:

c j = ht · m j for j ∈ 1..K (11)

Generating utterances: Generate The expert
can produce two types of utterances, according
to whether it is recommending a movie or asking
for more input from the seeker. For Recommend,
the response is produced by a template: “How
about this movie, [MOVIE]?” where [MOVIE] is
the movie that the expert is recommending. For
Speak, the next utterance is generated by taking
the dialogue context history ht and the average of
all movie representations M = AVG(m1, ..,mK), and
inputting them into a seq2seq generative model
with attention (Bahdanau et al., 2015). The model
is then trained to minimize the negative log like-
lihood of the true next utterance xt+1 according to



Figure 7: Interface of our data collection (1): task description page.

the model distribution pgen:

Lgen = − log pgen(xt+1|ht, M),where (12)

M = AVG(m1, ..,mK) (13)

We include Recommend utterances in the Lgen cal-
culation; as a result, the generation loss is also a
partial indicator of other aspects such as Decide
and Predict, in addition to the corresponding spe-
cific losses (see below).

Predicting the correct movie to recommend:
Predict Let y denote the correct movie. The pre-
diction module is trained by minimizing the neg-
ative log likelihood of y according to the distri-
bution of a softmax predictor over the c j inputs
described above:

Lpredict = − log p(y|c1, · · · , cK), where (14)

c j = ht · m j for j ∈ 1..K (15)

When making a recommendation, the expert
recommends the top candidate: arg maxc{r1..rK}.
We also experimented with using a soft represen-
tation for the target movie distribution, for exam-
ple through a softmax over similarities. For in-
stance, in Figure 2, the hard ground-truth movie
distribution is {1, 0, 0, 0, 0}, and the soft version is
{0.37, 0.15, 0.16, 0.16, 0.15}. But the hard version
always outperformed the soft version in our exper-
iments.

Deciding when to recommend: Decide The ex-
pert needs to decide whether to to recommend a
movie or speak to elicit more information. We
model this using a two-layer perceptron that takes
the movie prediction distribution scores and the di-
alogue context as input, and predicts whether to
make a recommendation or not. Training is con-
ducted by minimizing the negative log likelihood
of the ground truth decision:

Ldecide = pMLP(dt+1|ht, c1, · · · , cK) (16)

We also experimented with other functions of
the movie prediction distribution (e.g., skewness
and kurtosis (Mardia, 1970)), but the multi-layer
perceptron (MLP) always performed better.

Supervised loss of the overall system: The
overall objective function of the full supervised
system is as follows:

Lsup = αLgen + βLpredict + (1−α−β)Ldecide

(17)

where α and β are weight terms that control the
balance between the different objectives and are
empirically optimized on the validation set. For
the predict and decide losses, we use annealing at
the beginning of training, with all the weight being
given to the generate loss, and the weights of the
other two being gradually increased.



(a) Seeker’s left panel (b) Seeker’s right panel

(c) Expert’s left panel (d) Expert’s right panel

Figure 8: Interface of our data collection (2): seeker’s and expert’s pages.


