
A Details about Preprocessing of the

People’s Daily Dataset

In this section, we describe the details about pre-
processing of the People’s Daily dataset.

Firstly, we treat sentence, which is segmented
by particular punctuations, as the minimum unit
and then shuffle the corpus. We split the corpus
into the training set, the validation set and the test
set, which contain 734k, 10k, 19k words respec-
tively. Similar to the preprocessing performed in
(Mikolov et al., 2010), we replace the number with
<N>, the specific date with <date>, the year with
<year>, and the time with <time>. Different
from the preprocessing of the English language
modeling dataset, we keep the punctuations and
therefore do not append <eos> at the end of each
sentence. Those words that occur less than 5 times
are replaced with <unk>.

Since our model requires that every word should
be included in the dictionary of HowNet, we
segment each non-annotated word into annotated
words with the forward maximum matching algo-
rithm.

B Details about Preprocessing of the

LCSTS Dataset

In this section, we describe the details about pre-
processing of the LCSTS dataset.

The dataset consists of over 2 million article-
headline pairs collected from Sina Weibo, the
most popular social media network in China. It’s
composed of three parts. Each pair from PART-
II and PART-III is labeled with a score which in-
dicates the relevance between the article and its
headline. As its author suggests, we take pairs
from a subset of PART-II as the validation set and
a subset of PART-III as the test set. Only pairs with
score 3, 4 and 5, which means high relevance, are
taken into account. We take pairs from PART-I
that do not occur in the validation set as the train-
ing set.

Similar to what we do for preprocessing the
People’s Daily dataset, the word segmentation is
carried out with jiebavi based on the dictionary of
HowNet to alleviate the OOV problems.

C Details about Experiments Setting

In this section we describe the strategy we adopt
to choose hyper-parameters and the optimal hyper-

vi https://pypi.python.org/pypi/jieba

Hyper-parameter Baseline
Learning rate 30
Batch size 15
Embedding size 400
RNN hidden size [1150, 1150, 400]
Word-level V-dropout 0.1
Embedding V-dropout 0.5
Hidden state V-dropout 0.2
Recurrent weight dropout 0.5
Context vector dropout 0.4

Table 7: Hyper-parameters used for AWD-LSTM and
its variants

parameters used in the experiment.

C.1 Language Modeling

The hyper-parameters are chosen according to
the performance on the validation set. For
medium (Tied) LSTM and its cHSM, tHSM
variants, we search the dropout rate from
{0.45, 0.5, 0.55, 0.6, 0.65, 0.7}. For large (Tied)
LSTM and its cHSM, tHSM variants, we search
the dropout rate from {0.6, 0.65, 0.7, 0.75, 0.8}.
For AWD-LSTM and its variants, we follow most
of the hyper-parameters described in (Merity et al.,
2018) and only search the dropout rates (embed-
ding V-dropout from {0.35, 0.4, 0.45, 0.5}, hidden
state V-dropout from {0.2, 0.25, 0.3}, word level
V-dropout from {0.05, 0.1, 0.15} and context vec-
tor dropout from {0.4, 0.5}). For our SDLM and
MoS, we fix all other hyper-parameters and only
search the dropout rates of the last two layers re-
spectively from {0.35, 0.4, 0.45} and {0.25, 0.3}.
The initial learning rate for MoS on the top of
AWD-LSTM is set to 20 to avoid diverging.

For (Tied) LSTM, we set the hidden unit and
word embedding size to 650 (medium) / 1500
(large), batch size to 20, bptt to 35, dropout rate
to 0.6 (medium) / 0.7 (large) and initial learn-
ing rate to 20. The optimal dropout rates for
cHSM and tHSM are 0.55 (cHSM, medium), 0.5
(cHSM, medium, tied), 0.7 (cHSM, large), 0.65
(cHSM, large, tied), 0.55 (tHSM, medium) and 0.7
(tHSM, large). For AWD-LSTM and its variants,
the hyper-parameters for the baseline are summa-
rized in Table 7.

C.2 Headline Generation

The hyper-parameters are chosen according to
the performance on the validation set. For
RNN-context, we search the dropout rate from
{0.1, 0.15, 0.2, 0.25, 0.3, 0.35}, the batch size
from {32, 64} and try SGD and Adam optimizers.
For RNN-context-SDLM, we search the dropout

https://pypi.python.org/pypi/jieba


rate from {0.15, 0.2, 0.25}, the batch size from
{32, 64} and try SGD and Adam optimizers.

For RNN-context, we use SGD optimizer with
starting learning rate 0.001. We decay the learn-
ing rate by 0.5 every epoch after 7 epochs. The
batch size is 32 and the dropout rate is 0.15.
For RNN-context-SDLM, we use Adam optimizer
with starting learning rate 0.001. The batch size is
64 and the dropout rate is 0.2.


