
A Appendix

A.1 Implementation Details
Our models are implemented in Tensorflow and
extended from those used in ?. Our BPE vo-
cabulary was generated with a budget of 10,000.
We are using GloVe pretrained word embeddings
with 100 dimensions. We used a learning rate
of 0.0005, and used the Adam algorithm for op-
timization. We tuned the LSTM cell size with val-
ues of 100 to 300. We tuned the dropout of the
network with values of 0.25 to 0.75. We trained
the models using the training set, until we stopped
seeing improvement on the development set. We
then took the best models on the development set
to get our test set results.

A.2 MedMentions Details
We restricted the data to 19 different entity types,
and documents were split into train, dev, and test
splits. The training dataset was then divided into
two sets, each containing half of the label types.
In each split, entities labeled with a type from
the other split are replaced with the ‘O’ (out-
side) label. The first set contains 10 entity types,
1,324 documents, and 29,532 entities. The second
set contains 9 entity types, 1,309 documents, and
29,466 entities. We trained our models on these
two sets, treating them as two different training
sets as we did in our other experiments, and tested
on the original MedMentions testing dataset.

A.3 Data Stats

Dataset Docs Chem Prot Disease
CDR 1,500 15,913 0 13,075
-train 500 5,197 0 4,269
-dev 500 5,346 0 4,329
-test 500 5,370 0 4,477
CP 2,432 31,831 30,316 0
-train 1,020 13,017 12,735 0
-dev 612 8,004 7,563 0
-test 800 10,810 10,018 0
WLD 17,381 154,665 14,680 148,971

Table 1: Data statistics for the the different datasets
showing the number of annotations for chemical, pro-
tein, and disease entities.

A.4 Merging Algorithm
To merge the output of two CRFs from the multi-
CRF model, we take the best labels for a sequence

from each CRF as given by the Viterbi algorithm.
We then merge these predicted labels at the entity
level. We go through each prediction of the se-
quence at the token level, keeping track of the be-
ginning of the current entity. If there is a conflict
between the labels, we continue through the se-
quence until the conflict can be resolved (i.e., both
predictions are no longer in their conflicting enti-
ties). To resolve a conflict, we favor the CRF that
predicted an entity. If both CRFs predicted enti-
ties, we favor the CRF that was more confident
in its predictions. This confidence is the sum of
each token’s marginal probability computed over
the maximum conflict span. The conflict resolu-
tion procedure is detailed in Algorithm 1.

Algorithm 1 Merging entity predictions
A, tokenwise Viterbi predictions from CRF A
P (A), tokenwise log marginal probabilities
from CRF A
B, tokenwise Viterbi predictions from CRF B
P (B), tokenwise log marginal probabilities
from CRF B
conflicts, list of indexes of conflicts between
CRF A and CRF B
output← A
for start, end in conflicts do

if isOutside(A[start : end]) then
output[start : end]← B[start : end]

else if isOutside(B[start : end]) then
output[start : end]← A[start : end]

else if sum(P (A)[start : end]) >
sum(P (B)[start : end]) then
output[start : end]← A[start : end]

else if sum(P (A)[start : end]) <
sum(P (B)[start : end]) then
output[start : end]← B[start : end]

end if
end for
return output


