
A Data Collection Details
A.1 Data Preprocessing
We downloaded the dump of English Wikipedia of
October 1, 2017, and extracted text and hyperlinks
with WikiExtractor.8 We use Stanford CoreNLP
3.8.0 (Manning et al., 2014) for word and sen-
tence tokenization. We use the resulting sentence
boundaries for collection of supporting facts, and
use token boundaries to check whether Turkers are
providing answers that cover spans of entire to-
kens to avoid nonsensical partial-word answers.

A.2 Further Data Collection Details
Details on Curating Wikipedia Pages. To
make sure the sampled candidate paragraph pairs
are intuitive for crowd workers to ask high-quality
multi-hop questions about, we manually curate
591 categories from the lists of popular pages by
WikiProject.9 For each category, we sample (a, b)
pairs from the graph G where b is in the considered
category, and manually check whether a multi-hop
question can be asked given the pair (a, b). Those
categories with a high probability of permitting
multi-hop questions are selected.

Bonus Structures. To incentivize crowd work-
ers to produce higher-quality data more efficiently,
we follow Yang et al. (2018), and employ bonus
structures. We mix two settings in our data collec-
tion process. In the first setting, we reward the top
(in terms of numbers of examples) workers every
200 examples. In the second setting, the workers
get bonuses based on their productivity (measured
as the number of examples per hour).

A.3 Crowd Worker Interface
Our crowd worker interface is based on ParlAI
(Miller et al., 2017), an open-source project that
facilitates the development of dialog systems and
data collection with a dialog interface. We adapt
ParlAI for collecting question answer pairs by
converting the collection workflow into a system-
oriented dialog. This allows us to have more con-
trol over the turkers input, as well as provide turk-
ers with in-the-loop feedbacks or helpful hints to
help Turkers finish the task, and therefore speed
up the collection process.

Please see Figure 4 for an example of the worker
interface during data collection.

8https://github.com/attardi/
wikiextractor

9https://wiki.sh/y8qu

Supporting Paragraphs

Friendly Hints

Worker Input

Figure 4: Screenshot of our worker interface on Ama-
zon Mechanical Turk.

10 30 50 70 90 110 130

1

2

3

4

·104

Question Length (tokens)

N
um

be
ro

fE
xa

m
pl

es

Figure 5: Distribution of lengths of questions in HOT-
POTQA.

B Further Data Analysis

To further look into the diversity of the data in
HOTPOTQA, we further visualized the distribu-
tion of question lengths in the dataset in Figure
5. Besides being diverse in terms of types as is
show in the main text, questions also vary greatly
in length, indicating different levels of complexity
and details covered.

C Full Wiki Setting Details

C.1 The Inverted Index Filtering Strategy
In the full wiki setting, we adopt an efficient

inverted-index-based filtering strategy for prelim-
inary candidate paragraph retrieval. We provide
details in Algorithm 2, where we set the control
threshold N = 5000 in our experiments. For some
of the question q, its corresponding gold para-

https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://wiki.sh/y8qu

Algorithm 2 Inverted Index Filtering Strategy
Input: question text q, control threshold N , ngram-to-
Wikidoc inverted index D
Inintialize:
Extract unigram + bigram set rq from q
Ncand = +1
Cgram = 0
while Ncands > N do

Cgram = Cgram + 1
Set Soverlap to be an empty dictionary
for w 2 rq do

for d 2 D[w] do
if d not in Soverlap then

Soverlap[d] = 1
else

Soverlap[d] = Soverlap[d] + 1
end if

end for
end for
Scand = ;
for d in Soverlap do

if Soverlap[d] � Cgram then
Scand = Scand [{d}

end if
end for
Ncands = |Scand|

end while
return Scand

graphs may not be included in the output candidate
pool Scand, we set such missing gold paragraph’s
rank as |Scand|+1 during the evaluation, so MAP
and Mean Rank reported in this paper are upper
bounds of their true values.

C.2 Compare train-medium Split to Hard
Ones

Table 9 shows the comparison between train-

medium split and hard examples like dev and test

under retrieval metrics in full wiki setting. As
we can see, the performance gap between train-

medium split and its dev/test is close, which im-
plies that train-medium split has a similar level of
difficulty as hard examples under the full wiki set-
ting in which a retrieval model is necessary as the
first processing step.

Set MAP Mean Rank CorAns Rank

train-medium 41.89 288.19 82.76
dev 42.79 304.30 97.93
test 45.92 286.20 74.85

Table 9: Retrieval performance comparison on full wiki
setting for train-medium, dev and test with 1,000 ran-
dom samples each. MAP and are in %. Mean Rank
averages over retrieval ranks of two gold paragraphs.
CorAns Rank refers to the rank of the gold paragraph
containing the answer.

