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Abstract

This is the supplementary material for
“Labeling Gaps Between Words: Recog-
nizing Overlapping Mentions with Men-
tion Separators” (Muis and Lu, 2017).
This material explains in more depth the
issue of spurious structures and also the
experiments settings.

1 Details on Spurious Structures

About mention hypergraph, we remarked in Sec-
tion 3.1 that the normalization term calculated by
the forward-backward algorithm includes spurious
structures, which are structures that are not part of
the true normalization term. This section shows in
more details how this is the case using some ex-
amples.

Consider the simplified mention hypergraph as
shown in Figure 1 (top left) consisting of three
words and where the possible edges have been re-
stricted to what are shown in the figure. Also, let
A, B, C, D, E, F respectively denote the edges
T1 → (I1), I0 → (I1), I1 → (I2), I1 → (X),
I1 → (I2,X), and I2 → (X) as shown in Fig-
ure 1 (left). Further assume that features are only
defined on these labeled edges.

Recall that in graphical models, any prediction
by the model forms a (hyper-)path from the root
node (here A0) to the leaf node (X), which means
each node other than the leaf node has exactly one
outgoing (hyper-)edge. Now, notice that there are
only three possible paths here, one for each of the
three (hyper-)edges coming out from the node I1

associated with the word “Apache”. See the top
right, bottom left, and bottom right of Figure 1 for
the visualization.

Now recall that in mention hypergraph, each
node is assigned a certain set of mention com-
binations which the node represents, as defined
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Figure 1: (top left) A simplified example of a
mention hypergraph with restricted edges. (oth-
ers) The three possible (hyper-)paths from the root
node to the leaf node.

by the subgraph from this node to the leaf node
X. In particular, the node I1 encodes three par-
tial mentions (partial because the start of the men-
tions are undefined yet, as they are defined by the
edge from T-nodes to I-nodes): {“Apache he-
licopter”}, {“Apache”}, and {“Apache”,“Apache
helicopter”}, as shown in Figure 2. Similarly, we
can see the subgraphs rooted at nodes A1 and E0

in Figure 3 and 4, respectively.

Now, the node A0 includes the 9 possible en-
tity combinations which are the results of taking
all possible combinations in A1 and E0. The list
of mention combinations and the respective paths
used to represent each of these combinations is as
follows:

a. A-C-F and B-C-F (Apache helicopter, an
Apache helicopter)
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Figure 2: (left) The graphical representation of all 3 mention combinations represented by the node I1.
(right) The full graph rooted at I1.
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Figure 3: (left) The graphical representation of all 3 mention combinations represented by the node A1.
(right) The full graph rooted at A1.
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Figure 4: (left) The graphical representation of all 3 mention combinations represented by the node E0.
(right) The full graph rooted at E0.

b. A-C-F and B-D (Apache helicopter, an
Apache)

c. A-C-F and B-E-F (Apache helicopter, an
Apache helicopter, an Apache)

d. A-D and B-C-F (Apache, an Apache heli-
copter)

e. A-D and B-D (Apache, an Apache)
f. A-D and B-E-F (Apache, an Apache heli-

copter, an Apache)
g. A-E-F and B-C-F (Apache helicopter,

Apache, an Apache helicopter)
h. A-E-F and B-D (Apache helicopter, Apache,

an Apache)
i. A-E-F and B-E-F (Apache helicopter,

Apache, an Apache helicopter, an Apache)

See Figure 5 for a graphical representation of
those 9 mention combinations. We display some
nodes twice to highlight the different paths repre-
senting each distinct mention, a result of consider-
ing the mentions in A1 and E0 independently. No-
tice that this differing paths exist because the node
I1 has two incoming edges in the path from A0 to

I1. Further note that these are only the graphical
representations of the mention combinations rep-
resented by the root node, as defined by the scor-
ing of the structures in the objective function.

The crucial observation is that out of those
nine mention combinations, only three of them
form valid paths of the original graph in Figure
1, namely: (a), (e), and (i). The other six men-
tion combinations will never be predicted by the
model, as they do not form paths found in the full
graph. For example, in (b), the node I1 has two
outgoing edges: C and D, and so this graph does
not form a path.

Those six mention combinations which are part
of the structures represented by the root node A0

which do not form valid paths are the spurious
structures, as during training they are calculated
as part of the normalization term, but the model
can not output any of those as a prediction, since
they do not form a path.

In essence, the normalization term fails to take
into account the restriction of forming a path when
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Figure 5: The graphical representation of all 9 mention combinations represented by node A0. See main
text for details.

calculating the scores of all possible paths because
it is considering the two sub-paths from A1 and
E0 independently, which cannot capture the re-
striction that the node I1 should have only one
outgoing edge. This is what causing the spurious
structures issue in mention hypergraph.

As a final remark, note that, depending on the
heuristics used, when the model outputs structure
(i) as its prediction, we can still interpret that struc-
ture to mean any of the six mention combina-
tions. More technically, this means that the spuri-
ous structures do not affect the interpretation pro-
cess, but they do affect how the objective function
is calculated, which in turns affects how the learn-
ing process goes. And as can be seen from the
experiments, removing these spurious structures
from the objective function indeed improves the
entity recognition ability of the model.

2 Mention Separators

This section will give more examples and illustra-
tions on how mention separators can be used to

encode any overlapping mentions in a sentence,
following the description at Section 4 in the main
paper.

Suppose we want to encode the phrase “the
IL2 regulatory region” containing two DNA men-
tions: “IL2” and “regulatory region” (example
taken from GENIA dataset). In Figure 6, we start
in step (1) by taking note of the possible start-
ing, continuing, or ending marker in the gaps be-
tween the words. Then in step (2) we process the
mention “IL2”, marking the starting and ending
marker before and after the mention accordingly.
In step (3) we process the mention “IL2 regulatory
region”, marking the starting, continuing, and end-
ing marker accordingly. Note that here it shares
the starting marker as the previous mention. After
all mentions have been processed, at step (4) we
convert the combination of markers at each gap
to the corresponding mention separator. Finally,
we model the resulting sequence of mention sep-
arators into the EDGE-based model, selecting the
edge corresponding to the mention separators.
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Figure 6: Example on how to encode mentions using mention separators with the EDGE-based model.

The decoding process will be the reverse of the
encoding process, while using some heuristics to
interpret the mention separator sequence. Con-
tinuing the example, given the path in the EDGE-
based model, we extract the sequence of mention
separators, and then convert them into the mark-
ers at each gap, resulting in the one we see at step
(3). Now, we need to interpret this sequence to
find out what are the mentions encoded by this se-
quence. First we note that since the end marker
after the word “region” is active, that means there
is a mention ending at that word. And since the
only active starting marker is the one before the
word “IL2”, it must be the case that “IL2 regu-
latory region” is one of the mentions encoded by
this sequence. This mention already explains the
presence of most active markers, except the end
marker after the word “IL2”. This means there
is another mention ending with the word “IL2”.
And again, since there is only one active starting
marker, we conclude that “IL2” is another mention
encoded by the sequence. Finally, we note that
these two mentions already explain the mention
separator sequence (i.e., these two mentions, when
encoded, will result in the same mention separator
sequence that we have), and so we end the inter-
pretation process.

Note that the example in Figure 6 shows only
the graph for recognizing one type. In the full
model, there will be multiple chains, one for each
type. An example of the full model can be seen in
Figure 7.

2.1 Relation to Previous Work

We also want to remark that the number of paths
in our multigraph-based model can be calculated
in the same way as how we previously calculated
the number of canonical encoding for discontigu-
ous mention recognition model, which is based on

the mention hypergraph, using a transition matrix
(Muis and Lu, 2016). In fact, the number of edges
between two states in our multigraph-based model
reflects the numbers in the transition matrix, and
so this multigraph-based model can be seen as a
model that utilizes the canonical structures found
in the mention hypergraph model. This means the
way we use multigraph to represent the overlap-
ping mentions as modeled by the mention hyper-
graph model theoretically can also be applied to
the discontiguous mention model.

However, the number of edges in the multi-
graph representation will explode. To illustrate,
in mention hypergraph, since there is only 1 node
per word (excluding the A, E, and T nodes), the
multigraph-based model requires only 21 = 2
states with 23 = 8 edges per word, while in
the discontiguous mention model supporting three
components, since there are 5 nodes per word (B0,
O1, B1, O2, and B2), the multigraph-based model
will require 25 = 32 nodes, with average num-
ber of edges per word being 213 = 8192, which
makes it much slower than the hypergraph-based
counterpart with only 25 edges per word. So we
can say that our multigraph-based approach trades
off the speed in mention hypergraph with a higher
F1-score.

3 Features

For ACE datasets we used these features:
1. Words and POS tags (with window of 3

words to the left and right of current word)
2. Words and POS tags n-gram (up to length 4

containing current word)
3. Bag-of-word (with window of 5 words to the

left and to the right of current word)
4. Orthographic (following Lu and Roth (2015))
5. Parent node type
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Figure 7: The multigraph model with two chains representing two types: DNA and PROT.

CoNLL2003-dev CoNLL2003-test CoNLL2003-dev CoNLL2003-test
w/s(F optimized) (F optimized)

P R F P R F P R F P R F

LCRF (single) 90.0 88.9 89.5 84.2 83.6 83.9 90.1 88.9 89.5 84.3 83.4 83.8 148.6
LCRF (multiple) 94.4 84.6 89.2 91.5 78.2 84.3 92.7 86.8 89.6 88.6 81.2 84.7 283.4
Ratinov and Roth (2009) - - 89.3 - - 83.7 - - - - - - -
Lu and Roth (2015) 94.4 83.4 88.5 91.1 77.0 83.5 89.7 88.7 89.2 84.6 82.9 83.8 1169.7
This work (STATE) 94.2 84.7 89.2 91.1 78.2 84.2 91.2 88.1 89.6 86.3 82.4 84.3 116.3
This work (EDGE) 94.5 84.6 89.3 91.3 78.2 84.3 93.3 86.5 89.8 89.2 80.4 84.6 554.0

Table 1: Complete results on CoNLL-2003.

For GENIA we used these features:
1. Words and POS tags (with window of 2

words to the left and right of current word)
2. Words and POS tags n-gram (up to length 4

containing current word)
3. Bag-of-word (with window of 5 words to the

left and right of current word)
4. Brown clusters with window of 1 word to the

left and right of current word (using 100 or
1000 clusters built from training data only)

5. Word shape (Finkel and Manning (2009))
6. Prefixes and suffixes of current word (up to

length 6)
7. Edge type

For CoNLL 2003 we used these features:
1. Words and POS tags (with window of 2

words to the left and right of current word)
2. Words and POS tags n-gram (up to length 4

containing current word)
3. Bag-of-word (with window of 5 words to the

left and right of current word)
4. Word shape (with window of 2 words to the

left and right of current word)
5. Prefixes and suffixes of current word (up to

length 5)
6. Orthographic (following Lu and Roth (2015))
7. Edge type

The mention penalty feature was added to all
models by assigning it to the edges which have the

semantics of starting a new entity, similar to how
it was defined originally in Lu and Roth (2015).
More specifically, for linear-chain CRF models we
add the mention penalty feature to all incoming
edges of the B and U nodes. For our STATE-based
model we add it to all incoming edges of the nodes
that includes S. For our EDGE-based model we
add it to the incoming edges of the I nodes.

4 GENIA Preprocessing

For GENIA, we used GENIAcorpus3.02p that
comes with POS tags for each word (Tateisi and
Tsujii, 2004). Similar to the problem faced by
Finkel and Manning (2009) on JNLPBA dataset,
we also find tokenization issues in this corpus.
As described by Tateisi and Tsujii (2004), when
a hyphenated word such as IL-2-induced is par-
tially annotated as an entity (in this case IL-2), the
POS annotation corpus splits it into two tokens,
which when done in test set will leak some infor-
mation about the presence of entity. Unlike Finkel
and Manning (2009) which tried to match the tok-
enization during testing, we simply further split all
tokens at some punctuations (those matching the
regular expression [-/,.+]), while keeping the
information that they all originally come from the
same word. This has the advantage of simplifying
the tokenization procedure, although it makes the
task slightly more difficult due to the higher num-



% LCRF (single) LCRF (multiple) Lu and Roth (2015) This work (STATE) This work (EDGE)

P R F1 P R F1 P R F1 P R F1 P R F1

ACE-2004 O 42 65.6 40.9 50.4 69.6 50.4 58.5 72.5 52.4 60.8 72.2 55.1 62.5 72.1 55.3 62.6
Ø 58 67.4 66.6 67.0 70.5 68.2 69.4 72.5 65.0 68.6 74.2 65.4 69.5 74.1 65.5 69.5

ACE-2005 O 32 64.6 43.4 51.9 68.5 49.3 57.4 68.1 52.6 59.4 68.6 54.7 60.8 70.4 55.0 61.8
Ø 68 60.4 62.7 61.6 64.1 65.3 64.7 64.1 65.1 64.6 64.9 62.7 63.8 67.2 63.4 65.2

GENIA O 24 78.3 52.6 62.9 78.0 59.2 67.3 76.3 60.8 67.7 77.0 60.0 67.5 76.5 60.3 67.4
Ø 76 76.6 70.6 73.4 74.7 70.7 72.7 73.1 70.7 71.9 75.2 70.6 72.8 74.8 71.3 73.0

Table 2: Results on different types of sentences.

ber of tokens.
Also, to handle the discontiguous entities

present in GENIA dataset (mainly due to coor-
dinated entities involving ellipsis), following the
approach used by the JNLPBA shared task or-
ganizer (Kim et al., 2004), we consider a group
of coordinated entities as one structure. For ex-
ample, in “. . . the [T- and B-lymphocytes] count
in . . . ”, the entities “T-lymphocytes” and “B-
lymphocytes” are annotated as one structure “T-
and B-lymphocytes”.

5 Results on CoNLL-2003

Table 1 shows the full result of the experiments on
CoNLL-2003 dataset, which includes the result in
CoNLL-2003 development set, and also the results
after optimizing theF1 score. We see that since the
precision and recall in LCRF model is already bal-
anced, optimizing the F1 score does not improve
much, and even slightly decrease the result in the
test set. We do see, however, some slight improve-
ments in other models.

6 Results on Overlapping and
Non-overlapping Sentences

Table 2 shows the complete scores of each model
on the two subsets of the test set: the overlap-
ping ones (O) and the non-overlapping ones (Ø).
We can see that the edge-based model is quite ro-
bust to the amount of overlapping mentions in the
dataset. For example, in GENIA dataset where the
proportion of overlapping mentions is lower com-
pared to the ACE datasets, it still achieves good
results both in the overlapping part and the non-
overlapping part.

7 Hyperparameter

For each model, we tuned the l2-regularization
coefficient λ from the values {0.0, 0.001, 0.01,
0.1, 1.0}. And for GENIA we additionally tuned
the number of Brown clusters used from the val-
ues {100, 1000}. Table 3 lists the optimal λ for

each dataset and model. For GENIA, the optimal
Brown cluster size was found to be 1000, except
for ‘This work (STATE)’, where the best cluster
size is found to be 100.

ACE’04 ACE’05 GENIA CoNLL
LCRF (single) 0.1 0.01 0.1 0.001
LCRF (multiple) 0.001 0.0 1.0 0.001
Lu and Roth (2015) 0.001 0.0 1.0 0.01
This work (STATE) 0.0 0.001 1.0 0.001
This work (EDGE) 0.001 0.001 1.0 0.001

Table 3: The value of l2 regularization parameter
that gives the best result in development set.
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