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1 Attention-based Baseline Model
(Cross-Entropy)

Our attention baseline model is similar to the Bah-
danau et al. (2015) architecture, where we encode
input frame level video features to a bi-directional
LSTM-RNN and then generate the caption using a
single layer LSTM-RNN, with an attention mech-
anism. Let {f1, f2, ..., fn} be the frame-level fea-
tures of a video clip and {w1, w2, ..., wm} be the
sequence of words forming a caption. The distri-
bution of words at time step t given the previously
generated words and input video frame-level fea-
tures is given as follows:

p(wt|w1:t−1, f1:n) = softmax(W Thdt ) (1)

where wt and hdt are the generated word and hid-
den state of the LSTM decoder at time step t. W T

is the projection matrix. hdt is given as follows:

hdt = S(hdt−1, wt−1, ct) (2)

where S is a non-linear function. hdt−1 and wt−1

are previous time step’s hidden state and gener-
ated word. ct is a context vector which is a linear
weighted combination of the encoder hidden states
hei , given by ct =

∑
αt,ih

e
i . These weights αt,i

act as an attention mechanism, and are defined as
follows:

αt,i =
exp(et,i)∑n
k=1 exp(et,k)

(3)

where the attention function et,i is defined as:

et,i = wT tanh(Wah
e
i + Uah

d
t−1 + ba) (4)

where w, Wa, Ua, and ba are trained attention
parameters. Let θ be the model parameters and
{w∗

1, w
∗
2, ..., w

∗
m} be the ground-truth word se-

quence, then the cross entropy loss optimization
function is defined as follows:

L(θ) = −
m∑
i=1

log(p(w∗
t |w∗

1:t−1, f1:n)) (5)

2 Reinforcement Learning (Policy
Gradient)

Traditional video captioning systems minimize the
cross entropy loss during training, but typically
evaluated using phrase-matching metrics: BLEU,
METEOR, CIDEr, and ROUGE-L. This discrep-
ancy can be addressed by directly optimizing the
non-differentiable metric scores using policy gra-
dients pθ, where θ represents the model parame-
ters. In our captioning system, our baseline at-
tention model acts as an agent and interacts with
its environment (video and caption). At each time
step, the agent generates a word (action), and the
generation of the end-of-sequence token results in
a reward r to the agent. Our training objective is
to minimize the negative expected reward function
given by:

L(θ) = −Ews∼pθ [r(w
s)] (6)

where ws = {ws1, ws2, ..., wsm}, and wst is the word
sampled from the model at time step t. Based on
the REINFORCE algorithm (Williams, 1992), the
gradients of the non-differentiable, reward-based
loss function can be computed as follows:

∇θL(θ) = −Ews∼pθ [r(w
s)∇θ log pθ(ws)] (7)

The above gradients can be approximated from
a single sampled word sequencews from pθ as fol-
lows:

∇θL(θ) ≈ −r(ws)∇θ log pθ(ws) (8)

However, the above approximation has high
variance because of estimating the gradient with
a single sample. Adding a baseline estimator
reduces this variance (Williams, 1992) without
changing the expected gradient. Hence, Eqn: 8 can
be rewritten as follows:

∇θL(θ) ≈ −(r(ws)− bt)∇θ log pθ(ws) (9)



where bt is the baseline estimator, where bt can be
a function of θ or time step t, but not a function of
ws. In our model, baseline estimator is a simple
linear regressor with hidden state of the decoder
hdt at time step t as the input. We stop the back
propagation of gradients before the hidden states
for the baseline bias estimator. Using the chain
rule, loss function can be written as:

∇θL(θ) =
m∑
t=1

∂L

∂st

∂st
∂θ

(10)

where st is the input to the softmax layer, where
st = W Thdt . ∂L

∂st
is given by (Zaremba and

Sutskever, 2015) as follows:

∂L

∂st
≈ (r(ws)− bt)(pθ(wt|hdt )− 1wst ) (11)

The overall intuition behind this gradient for-
mulation is: if the reward r(ws) for the sampled
word sequence ws is greater than the baseline es-
timator bt, the gradient of the loss function be-
comes negative, then model encourages the sam-
pled distribution by increasing their word proba-
bilities, otherwise the model discourages the sam-
pled distribution by decreasing their word proba-
bilities.

3 Experimental Setup

3.1 MSR-VTT Dataset

MSR-VTT is a diverse collection of 10, 000 video
clips (41.2 hours of duration) from a commercial
video search engine. Each video has 20 human an-
notated reference captions collected through Ama-
zon Mechanical Turk (AMT). We use the standard
split as provided in (Xu et al., 2016), i.e., 6513 for
training, 497 for testing , and remaining for test-
ing. For each video, we sample at 3fps and we ex-
tract Inception-v4 (Szegedy et al., 2016) features
from these sampled frames and we also remove all
the punctuations from the text data.

3.2 YouTube2Text Dataset

We also evaluate our models on YouTube2Text
dataset (Chen and Dolan, 2011). This dataset has
1970 video clips and each clip is annotated with
an average of 40 captions by humans. We use
the standard split as given in (Venugopalan et al.,
2015), i.e., 1200 clips for training, 100 for val-
idation and 670 for testing. We do similar pre-
processing as the MSR-VTT dataset.

3.3 Automatic Evaluation Metrics

We use several standard automated evaluation
metrics: METEOR (Denkowski and Lavie, 2014),
BLEU-4 (Papineni et al., 2002), CIDEr-D (Vedan-
tam et al., 2015), and ROUGE-L (Lin, 2004).
We use the standard Microsoft-COCO evaluation
server (Chen et al., 2015).

3.4 Human Evaluation

Apart from the automatic metrics, we also present
human evaluation comparing the CIDEnt-reward
model with the CIDEr-reward model, esp. because
the automatic metrics cannot be trusted solely. Hu-
man evaluation uses Relevance and Coherence as
the comparison metrics. Relevance is about how
related is the generated caption w.r.t. the content
of the video, whereas coherence is about the logic,
fluency, and readability of the generated caption.

4 Training Details

All the hyperparameters are tuned on the valida-
tion set. For each of our main models (baseline,
CIDEr and CIDEnt), we report the results on a
5-avg-ensemble, where we run the model 5 times
with different initialization random seeds and take
the average probabilities at each time step of the
decoder during inference time. We use a fixed
size step LSTM-RNN encoder-decoder, with en-
coder step size of 50 and decoder step size of
16. Each LSTM has a hidden size of 1024. We
use Inception-v4 features as video frame-level fea-
tures. We use word embedding size of 512. Also,
we project down the 1536-dim image features
(Inception-v4) to 512-dim.

We apply dropout to vertical connections as
proposed in Zaremba et al. (2014), with a value
0.5 and a gradient clip size of 10. We use Adam
optimizer (Kingma and Ba, 2015) with a learn-
ing rate of 0.0001 for baseline cross-entropy loss.
All the trainable weights are initialized with a
uniform distribution in the range [−0.08, 0.08].
During the test time inference, we use beam
search of size 5. All our reward-based mod-
els use mixed loss optimization (Paulus et al.,
2017; Wu et al., 2016), where we train the model
based on weighted (γ) combination of cross-
entropy loss and reinforcement loss. For MSR-
VTT dataset, we use γ = 0.9995 for our CIDEr-
RL model and γ = 0.9990 for our CIDEnt-
RL model. For YouTube2Text/MSVD dataset,
we use γ = 0.9985 for our CIDEr-RL model



Figure 1: Output examples where our CIDEnt-RL
model produces better entailed captions than the
phrase-matching CIDEr-RL model, which in turn
is better than the baseline cross-entropy model.

and γ = 0.9990 and for our CIDEnt-RL model.
The learning rate for the mixed-loss optimiza-
tion is 1 × 10−5 for MSR-VTT, and 1 × 10−6

for YouTube2Text/MSVD. The λ hyperparameter
in our CIDEnt reward formulation (see Sec. 4
in main paper) is roughly equal to the baseline
cross-entropy model’s score on that metric, i.e.,
λ = 0.45 for MSR-VTT CIDEnt-RL model and
λ = 0.75 for YouTube2Text/MSVD CIDEnt-RL
model.

5 Analysis

Figure 1 shows several examples where our
CIDEnt-reward model produces better entailed
captions than the ones generated by the CIDEr-
reward model. This is because the CIDEr-style
captioning metrics achieve a high score even when
the generation does not exactly entail the ground
truth but is just a high phrase overlap. This
can obviously cause issues by inserting a sin-
gle wrong word such as a negation, contradic-

tion, or wrong action/object. On the other hand,
our entailment-enhanced CIDEnt score is only
high when both CIDEr and the entailment classi-
fier achieve high scores. The CIDEr-RL model,
in turn, produces better captions than the base-
line cross-entropy model, which is not aware of
sentence-level matching at all.
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