
Details of the First-Order Parsing Algorithm

Junjie Cao, Sheng Huang, Weiwei Sun and Xiaojun Wan
Institute of Computer Science and Technology, Peking University

The MOE Key Laboratory of Computational Linguistics, Peking University
{junjie.cao,huangsheng,ws,wanxiaojun}@pku.edu.cn

1 Sub-problems

Following Cao et al.’s algorithm, we also consider
six sub-problems when we construct a maximum
dependency graph on a given interval [i, k] ∈ V .
Because C sub-problem is too complex and rare in
linguistic analysis, we ignore it in this algorithm.
What’s more, we use a flag to indicate whether
some edge exists or not and we still allow cross-
ing sub-problem to degenerate to Int sub-problem.
The sub-problems are explained as follows:

Int[i, j] It represents an interval from i to j in-
clusively. And there is no edge e(i′,j′) such
that i′ ∈ [i, j] and j′ /∈ [i, j]. We further dis-
tinguish two types for Int. IntO[i, j] may or
may not contain edge e(i,j), while IntC [i, j]
contains e(i,j).

LR[i, j, x] It represents an interval from i to j
inclusively and an external vertex x. ∀p ∈
(i, j), pt[x, p] = i or j. LR[i, j, x] disal-
low e(i,j), e(x,i) or e(x,j). And e(i,j) will
be captured in the procedure of generating
LR[i, j, x].

N [i, j, x] It represents an interval from i to j
inclusively and an external vertex x. ∀p ∈
(i, j), pt[x, p] /∈ [i, j]. N could contain e(i,j)
but disallows e(x,i). If there exists e(i,j), this
sub-problem should degenerate to Int sub-
problem. We further distinguish two types
for N. NO[i, j, x] may or may not contian
e(x,j). While NC [i, j, x] disallows e(x,j) be-
cause it is captured in the procedure of gen-
erating NC [i, j, x].

L[i, j, x] It represents an interval from i to j
inclusively as well as an external vertex x.
∀p ∈ (i, j), pt[x, p] = i. L could contain
e(i,j) but disallows e(x,i). We further distin-
guish two types for L. LO[i, j, x] may or may

not contian e(x,j). While LC [i, j, x] disallows
e(x,j) because it is captured in the procedure
of generating LC [i, j, x].

R[i, j, x] It represents an interval from i to j
inclusively as well as an external vertex x.
∀p ∈ (i, j), pt[x, p] = j. R disallows e(x,j)
and e(x,i). We further distinguish two types
for R. RO[i, j, x] may or may not contian
e(i,j). While RC [i, j, x] disallows e(i,j) be-
cause it is captured in the procedure of gen-
erating RC [i, j, x].

In this algorithm, we add all crossing edges during
decomposition and add noncrossing edges in IntC
for consideration of high-order.

2 Decomposing an Int Sub-problem

Consider IntO[i, j] and IntC [i, j] sub-problem.
Because IntC [i, j] is very similar to IntO[i, j] and
needs to expand in second-order, we just show the
decomposition of IntC [i, j]. Assume that k ∈
[i, j]∪∅ is the farthest vertex from i that is linked
with i, and x = pt[i, k] (x may be ∅). There are
some cases as following:

Case 1: No Arc From i Vertex k = ∅ and x = ∅.
We can remove i and consider interval [i +
1, j]. Because there exist no edge from i to
some node in [i + 1, j], interval [i + 1, j] is
still an IntO. The problem is decomposed to
: IntO[i+ 1, j] + e(i,j).

Case 2: e(i,k) is noncrossing Vertex k ∈ (i, j)
and x = ∅. Obviously, [i, k] and [k, j] are still
Int since e(i,k) is noncrossing. The problem
is decomposed to : IntC [i, k] + IntO[k, j] +
e(i,j).

Case 3: x ∈ (k, j] In this case, e(i,k) must be a
crossing edge. Vertex k and x divide the



IntO[i, j]

i j

LR[i, j, x]

x i j

NO[i, j, x]

x i j

LO[i, j, x]

x i j

RO[i, j, x]

x i j

IntC [i, j]

i j

NC [i, j, x]

x i j

LC [i, j, x]

x i j

RC [i, j, x]

x i j

(a) Case 1: No Arc From i
(a)

i j
=
i+ 1 j

(b) Case 2: e(i,k) is noncrossing

(b)

i k j
=

i k
+

k j

(c) Case 3: x ∈ (k, j]

Dashed edge exist?

i

k
x j

(c.1)

i

k

x j
=
i

k
x
+
k x

+
k x j

(c.2)

i

k

x j
=
i

k
x
+
k x

+
x j

(d) Case 4: x ∈ (i, k)

Dashed edge exist?

i x
k

j

(d.1)

i x

k

j
=
i x

+
i x k

+
x k j

(d.2)

i x

k

j
=
i x k

+
x k

+
x k j

Figure 1: Decomposition for Int[i, j], with pt[i, k] = x.

interval [i,j] into three subparts: [i,k], [k,x],
[x,j]. Because x may be j, interval [x,j] may
only contain j and become an empty inter-
val. We define x′ as pencil point of all edges
from [i, k] to x, and divide this case into two
subproblems according to x′ as Cao et al.’s
algorithm.

First we assume there exist edges from k to
(x, j], so x′ can only be k and pencil point
of edges from k to (x, j] is x. Thus interval
[i, k] is an R with external vertex x. What’s
more, [i, k] is an RC because we have cap-
tured e(i,k). Any edge from within [k, x] to an
external vertex violates 1-endpoint-crossing
restriction, thus interval [k, x] is an IntO.
Since x is pencil point of edge from k to
(x, j], interval [x, j] is an LO with external
vertex k. In summary, we can decompose it
into RC [i, k, x] + IntO[k, x] +LO[x, j, k] +
e(i,k) + e(i,j).

Second we assume there is no edge from k
to [x, j], so x′ can be i or k and [k,x], [x,j]
are IntO. And the result is LR[i, k, x] +
IntO[k, x] + IntO[x, j] + e(i,k) + e(i,j).

Case 4: x ∈ (i, k) In this case, e(i,k) must also
be a crossing edge. Vertex k and x divide the
interval [i,j] into three subparts: [i,x], [x,k],
[k,j].

First we assume there exist edges from i to
(x, k), so pencil point of edges from x to

(k, j] is i. Thus interval [k, j] is an NO with
external vertex x because neither k nor j is
pencil point. And interval [i, x] should be
IntO. Since x is pencil point of edges from
i to (x, k], interval [x, k] is an L with exter-
nal vertex i. What’s more, [x, k] is an LC

because we have captured e(i,k). And the
decomposition is IntO[i, x] + LC [x, k, i] +
NO[k, j, x] + e(i,k) + e(i,j).

Second we assume there is no edge from i
to [x, k], but edge from k to [i, x], So pencil
point of edges from x to (k, j] is k. Thus
interval [k, j] is an LO with external vertex x.
And interval [x, k] should be IntO. Since x is
pencil point of edges from k to [i, x), interval
[i, x] is an RO with external vertex k. And the
decomposition is RO[i, x, k] + IntO[x, k] +
LO[k, j, x] + e(i,k) + e(i,j).

For IntO[i, j], because there may be e(i,j), we
should add one more decomposition IntO[i, j] =
IntC [i, j], and we don’t need to add e(i,j) in all
cases.

3 Decomposing an N Sub-problem

Consider NO[i, j, x] and NC [i, j, x] subproblem.
And we show the decomposition of NO[i, j, x].

Case 1: If there is no more edge from x to (i, j],
then it will degenerate to IntO[i, j].

Case 2: If there exists e(x,j), then it will reduced
to NC [i, j, x] + e(x,j).



Case 3: If there is edge from x to (i, j), we de-
fine e(x,k) (k ∈ (i, j)) as the farthest edge
from i and it divides [i, j] into [i, k] and [k, j].
Because neither i nor j is pencil point of
e(x,k), [i, k] and [k, j] will be NC [i, k, x] and
IntO[k, j] respectively. The decompostion is
NC [i, k, x] + IntO[k, j] + e(x,k).

For NC [i, j, x], we just ignore Case 2 and fol-
low the others.

x i j
=

x i j

x i k j
=

x i k
+
k j

Figure 2: Decomposition for N [i, j, x].

4 Decomposing an L Sub-problem

Consider LO[i, j, x] and LC [i, j, x] subproblem.
And we show the decomposition of LO[i, j, x].

Case 1: If there is no more edge from x to (i, j],
then it will degenerate to IntO[i, j].

Case 2: If there exists e(x,j), then it will degener-
ate to LC [i, j, x] + e(x,j).

Case 3: If there is edge from x to (i, j), we de-
fine e(x,k) (k ∈ (i, j)) as the farthest edge
from i and it divides [i, j] into [i, k] and
[k, j]. First, if there is an edge from x to
(i, k), [i, k] and [k, j] will be LC [i, k, x] and
NO[k, j, i] respectively. The decomposition
is LC [i, k, x] +NO[k, j, i] + e(x,k).

Second, if there is no edge from x to (i, k)
(e(x,k) is the last edge from x to (i, j)), [i, k]
and [k, j] will be IntO[i, k] and LO[k, j, i] re-
spectively. The decomposition is IntO[i, k]+
LO[k, j, i] + e(x,k).

For LC [i, j, x], we just ignore Case 2 and follow
the others.

5 Decomposing an R Sub-problem

Consider RO[i, j, x] and RC [i, j, x] subproblem.
And we show the decomposition of RO[i, j, x].

Case 1: If there is no more edge from x to (i, j),
then it will degenerate to IntO[i, j].

Case 2: If there exists e(i,j), then it will reduce to
RC [i, j, x] + e(i,j).

Case 3: If there is edge from x to (i, j), we define
e(x,k) (k ∈ [i, j]) as the farthest edge from j
and it divides [i, j] into [i, k] and [k, j]. First,
if there is edge from x to (k, j), [i, k] and
[k, j] will be NO[i, k, j] and RO[k, j, x] re-
spectively. However, e(k,j) will be calculated
twice following this decomposition. So we
define NO[i, k, j] as a special NC [i, k, j] to
disallow it generating e(k,j). The decomposi-
tion is NC [i, k, j] +RO[k, j, x] + e(x,k).

Second, if there is no edge from x to
(k, j), [i, k] and [k, j] will be RO[i, k, j] and
IntO[k, j] respectively. The decomposition
is RO[i, k, j] + IntO[k, j] + e(x,k).

For RC [i, j, x], we can still ignore Case 2. Spe-
cially, we disallow RC to be IntC . RC can only
be produced by RO’s Case 2 and Int’s Case 3. For
RO’s Case 2, RO can be IntO firstly and then be
IntC . For Int’s Case 3, we can use Int’s Case 2
directly to get IntC instead. So we don’t need to
degenerate RC

6 Decomposing an LR Sub-problem

Because we don’t consider C subproblem in Cao
et al., there must be a vertex k within [i, j] which
divides [i, j] into [i, k] and [k, j]. And i is the
pencil point of edges from x to (i, k] and j is
the pencil point of edges from x to (k, j). Ob-
viously, [i, k] is an LO and [k, j] is an RO with
external x. Thus the problem is decomposed as
LO[i, k, x] +RO[k, j, x].

Of course, either i or j may not be a pencil
point. If the common pencil point of all edges
from x to (i, j) is i, then the model is the same as
LO[i, j, x]. Similarly, if the common pencil point
is j, then the model is the same as RC [i, j, x]. And
if neither i nor j is pencil point, it will be an Int
problem.

However, we don’t need to consider this two
special cases. If the common pencil point is only
i, i is the pencil point of edges from x to (i, k] but
there must be no edge from x to (k, j) and [k, j] is
an Int. Thus we can still use above decomposition
to express this case, just degenerate RO[k, j, x] to
IntO[k, j]. If the common pencil point is j, this
case is equal to Int’s Case3.1. If neither i or j is
pencil point, this case is equal to Int’s Case2.



Dashed edge exist?

x i

k

j

(b)

x i j
=

x i j

(c.1)

x i

k

j
=
x i k

+
i k j

(c.2)

x i

k

j
=
i k

+
i k j

Figure 3: Decomposition for L[i, j, x].

Dashed edge exist?
xi

k

j

(1)

xi j
=

xi j

(2)

xi

k

j
=
i k j

+
k j x

(3)

xi

k

j
=
i k j

+
k j

Figure 4: Decomposition for R[i, j, x].

x i k j
=

x i k
+
x k j

Figure 5: Decomposition for LR[i, j, x].

7 Complexity and summary

We discuss each subproblem by enumerating dif-
ferent cases to get only one edge at once. Int sub-
problem can decompose by discussing whether i
has a crossing arc and position of its pencil point.
For LR subproblem, we simplify the decomposi-
tion and ignore C subproblem. For other crossing
problem, we consider whether it can degenerate
and the number of arcs from x to (i, j). Obviously,
this algorithm has the same time and space com-
plexity with Cao et al.’s degenerated algorithm.

References
Junjie Cao, Sheng Huang, Weiwei Sun, and Xiao-

jun Wan. 2017. Parsing to 1-endpoint-crossing,
pagenumber-2 graphs. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics.


