
Supplementary Material:
Neural Shift-Reduce CCG Semantic Parsing

Dipendra K. Misra and Yoav Artzi
Department of Computer Science and Cornell Tech

Cornell University
New York, NY 10011

{dkm,yoav}@cs.cornell.edu

1 Number of Operations in Shift-Reduce
and CKY CCG Parsers

Let Λ be a CCG lexicon, Rb the set of binary CCG
rules, and Ru the set of unary CCG rules. While
in practice lexical entries may map phrases to cate-
gories, for simplification, we assume that each lex-
ical entry contains only one token.1 Let |λ| be the
number of lexical entries for a token in Λ. We as-
sume an input sentence x with m tokens. We define
an operation in shift-reduce parsing to be the appli-
cation of a single action to a configuration. In CKY,
an operation is an application of a unary rule to a
cell in the chart, or a binary rule to a pair of adjacent
cells.

CKY CCG Semantic Parser CKY parsing starts
with populating the chart using the lexicon Λ. Under
our single-token assumption, this requires at most
m|λ| operations. In practice, though, the number
of categories maintained in each cell is capped by
a beam of size k. We denote a cell that spans
the token sequence 〈xi, . . . , xj〉 as [i, j]. Given the
cell [i, j], j > i, CKY considers all possible splits
{〈[i, l], [l + 1, j]〉 | i ≤ l ≤ j} of this cell and ap-
plies binary rules b ∈ Rb to the categories in the
cells [i, l] and [l+1, j]. This requiresmk2|Rb| oper-
ations due to O(m) possible splits, k2 possible cat-
egories from the beams of the two cells, and |Rb|
binary rules. There is a total of m2 cells. There-
fore, the total number of operations for binary rules
is m3k2|Rb|. For every cell, we can also apply a
unary rule from Ru. The overall number of unary
operations is m2k|Ru|. The total number of opera-

1Generalization to multiple tokens is straightforward.

tions is O(m|λ|+m3k2|Rb|+m2k|Ru|).

Shift-Reduce CCG Semantic Parser The shift-
reduce parser also uses a beam of size k. The beam
maintains the k max-scoring configurations. At each
step, it applies all possible actions to each configu-
ration in the beam to generate a new configuration.
The top-k new configurations are then retained in
the beam. We can perform shift for each token on
the buffer, which give m operations. Since binary
reduce removes an element from the stack, we can
do at most m− 1 such operations. We disallow two
consecutive unary reduce actions. Therefore, unary
reduce actions must follow a shift or a binary reduce,
which translates to at most m − 1 + m = 2m − 1
operations. Therefore, the parser necessarily termi-
nates after at most 4m − 2 beam expansions. For a
given configuration, we can apply |λ|+ |Rb|+ |Ru|
actions. In every step of the algorithm there are at
most k configurations to process, giving a total of
O(4mk(|λ|+ |Rb|+ |Ru|) operations

Quantitative Comparison In our experiments,
the lexicon Λ contains 1.7M entries for 11K words
and phrases. If we define |λ| to be the mean num-
ber of entries, we get |λ| = 170. The average sen-
tence length m in the data is 25. Our CCG has 30
binary rules (Rb) and 24 unary rules (Ru). Artzi
et al. (2015) use a beam size of 50 in their CKY
parser, which gives roughly 109 operations per sen-
tence of length 25. For our final results, we use a
beam of 512, which gives roughly 107 operations
for the same length, two orders of magnitude fewer.

Feature Type Dimension Description
RULE-NAME 16 Action name

POS 12 POS tags of all tokens removed from the buffer in a SHIFT operation
TEMPLATE∧RPOS 32 Template and POS tag of the first token on the buffer following a SHIFT (not

triggered for reduce operations)
TEMPLATE∧LPOS 32 Template and POS tag of the last token consumed before a SHIFT (not triggered

for reduce operations)
NEXT-POS1 12 POS of the first token on the buffer after an action
NEXT-POS2 12 POS of the second token on the buffer after an action
PREV-POS1 12 POS of the recently consumed token before an action
PREV-POS2 12 POS of the second recently consumed token before an action

Features from Artzi et al. (2015)
LEX-TEMPLATE 48 Triggers four features on SHIFT operations:

Lexeme of the lexical entry
Template of the lexical entry
Conjunction of lexeme and template
Conjunction of template and POS of the lexical entry tokens

TYPESHIFTSEM 32 Conjunction of a CCG type-shifting unary rule and the head predicate of the
logical form

ATTRIBUTE∧POS 32 Conjunction of attributes used in the lexical entry and token POS tags
DYN 8 Using a lexical entry dynamically generated (e.g., NER)

DYNSKIP 8 Skipping a word
LOGEXP 8 Repeating conjuncts in the root logical form

SLOPPYLEX 16 Using a lexical entry dynamically created with sloppy heuristics
TYPESHIFT 16 Using a unary type-shifting rule

CROSS 16 Using a crossing composition binary rule
ATTACH 32 Entity-relation-entity logical form attachment features

Table 1: Sparse features used for action embedding

2 Action Features

Table 1 lists the features used to compute ac-
tion embeddings φ(a, c). Each feature is mapped
to its embedding representation via a lookup ta-
ble. The embeddings are then concatenated to cre-
ate the action representation. We use a factored
lexicon representation (Kwiatkowski et al., 2011),
where entries are dynamically generated by com-
bining lexemes and templates. For example, the
lexical entry: remain ` S\NP[pl]/(N[pl]/N[pl]) :
λf.λx.f(λr.remain-01(r) ∧ ARG1(r, x)) is gen-
erated from the lexeme 〈remain, {remain-01}〉
and the template λv1.[S\NP[pl]/(N[pl]/N[pl]) :
λf.λx.f(λr.v1(r) ∧ ARG1(r, x))]. Feature type
dimensionality was selected based on the possible
number of features for the type. For example, there
are many more lexemes than part-of-speech tags, re-
quiring a relatively higher dimensionality for lexeme
features. If more than one feature is active for a
given feature type, we average the embeddings in
the action representation. Additionally, we learn in-
active embedding for every feature type, which is

used when there are no active features of this type.

3 Embedding logical forms

Given a logical form z, its embedded representation
is computed by the recursive function ψ(z). We use
simply-typed lambda calculus logical forms. A log-
ical form is defined with four base cases:

• Constant c
• Variable v
• Literal p(z1, . . . , zk), where the predicate p is a

logical form and the arguments z1, . . . , zk are log-
ical forms
• Lambda term λv.z1, where v is a variable and the

body z1 is a logical form

Each logical form is typed. The function ψ(z) fol-
lows these base cases to compute the embedding of
z. Algorithm 1 describes ψ(z). The recursive com-
bination is achieved with a single-layer neural net-
work parameterized by Wr, δr, and the tanh ac-
tivation function. The embedding of a constant c
is a combination of its name and type embeddings,
each derived from a lookup table (line 2). Given a

Algorithm 1 ψ: Embeds a typed lambda calculus expression.

Input: A logical expression or a list of expressions e, em-
bedding lookup tables U and V for logical constants and
types.

Definitions: [;] represents concatenation. Wr is a Mr × 2Mr

matrix and δr ∈ RMr is a bias term. We use c, v, and z
for constant, variable, and generic logical form.

Output: Embedding ν ∈ RMr

1: CASE e:
2: c : tanh(Wr([U [c.name];V [c.type]]) + δr)
3: v : V [v.type]
4: p [z1 · · · zk] : tanh(Wr[ψ(p);ψ([z1 · · · zk])] + δr)
5: [z1 · · · zk] : tanh(Wr[ψ(z1);ψ([z2 · · · zk])] + δr)
6: λv. z : tanh(Wr[ψ(v);ψ(z)] + δr)

variable v, its embedding is given via a lookup ta-
ble V indexed by variable types (line 3). Literals
are embedded by recursively embedding their argu-
ments and combining with the predicate embedding
(lines 4-5). Finally, for lambda terms, the variable
embedding is combined with the body embedding
(line 6). The logical form embedding size Mr is 35.
All parameters (Wr, δr, and all lookup embeddings)
are initialized using the Glorot and Bengio (2010)
scheme, similar to the other parameters in the shift-
reduce parser.

4 Word Skipping

Since word skipping is never selected during train-
ing, the model learns to discourage it. Therefore,
we define the term ε(a), where ε(a) = γ if the
action is a SHIFT that skips the next word, other-
wise ε(a) = 0. In practice, this is accomplished
by adding special lexical entries to the lexicon that
mark skipping. The probability of action a given
configuration c then incorporates the term ε(a):

p(a | c) = exp {φ(a, c)WbF(ξ(c)) + ε(a)}∑
a′∈A(c) exp {φ(a′, c)WbF(ξ(c)) + ε(a′)} .

We tune γ on a small subset of the development data
and set it to γ = 1.0.

References

Artzi, Y., Lee, K., and Zettlemoyer, L. (2015).
Broad-coverage CCG semantic parsing with
AMR. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing.

Glorot, X. and Bengio, Y. (2010). Understanding the
difficulty of training deep feedforward neural net-
works. In International Conference on Artificial
Intelligence and Statistics.

Kwiatkowski, T., Zettlemoyer, L. S., Goldwater, S.,
and Steedman, M. (2011). Lexical generalization
in CCG grammar induction for semantic parsing.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

