Fairness-Aware Online Positive-Unlabeled Learning

Hoin Jung, Xiaoqian Wang

Elmore Family School of Electrical and Computer Engineering

Issues in Text Classification in Reality

In the real-world, traditional machine learning algorithms are not always adequate.

<Toxicity Detection Framework>

Issues in Text Classification in Reality

Online Environment

- Data arrives incrementally, not all at once.
- Retraining from scratch with new data is costly and inefficient.

Lack of Positivity

- In many situations, not all positive instances are explicitly labeled.
- Unlabeled samples may include both positive and negative cases.

e.g., On social media, only a portion of toxic content is flagged,

while other toxic posts remain unmarked.

Issues in Text Classification in Reality

Imbalanced Positivity in Dataset (e.g. Wikipedia Toxicity Dataset)

- Certain keywords are often associated with toxicity.
- This can lead to overestimating toxicity if a content includes these specific terms.

Issues in Text Classification in Reality

Fairness in Classification - Equalized Odds (EOd)

- A fairness criterion where a model's predictions are independent of a sensitive attribute (e.g., gender, race) for each outcome.
- The model should have the same true positive rate and false positive rate across different groups.

Issues in Text Classification in Reality

Fairness in Classification - Equalized Odds (EOd)

PURDUE UNIVERSITY

Issues in Text Classification in Reality

Problem Definition

Fairness in Online & Positive-Unlabeled Learning

- Online Learning
 - A classifier is trained on newly arrived data continuously.

Positive-Unlabeled (PU) Learning

- Train with positive and unlabeled set without explicit negativity.
- Unlabeled set could be predicted as either positive and negative.

Both Online Learning and PU Learning Deteriorate Fairness Issue.

Problem Definition

Fairness in Online & Positive-Unlabeled Learning

Both Online Learning and PU Learning Deteriorate Fairness Issue.

Problem Definition

Fairness in Online & Positive-Unlabeled Learning

Both Online Learning and PU Learning Deteriorate Fairness Issue.

Methodology

Fairness-Aware Online Positive-Unlabeled Learning (FOPU)

Convex Equalized Odd Loss

For two sensitive attribute group $a \in \{1, -1\}$, Equalized Odds is defined as

 $EOd = |TPR_{a=1} - TPR_{a=-1}| + |FPR_{a=1} - FPR_{a=-1}|$

As a relaxed form, the EOd becomes

$$EOd(f) = \mathbb{E}\left[\frac{\mathbb{I}_{a=1,y=1}}{p_{1,1}}\mathbb{I}_{f(x)>0} - \left(1 - \frac{\mathbb{I}_{a=-1,y=1}}{\pi - p_{1,1}}\mathbb{I}_{f(x)<0}\right)\right] + \mathbb{E}\left[\frac{\mathbb{I}_{a=1,y=-1}}{p_{1,-1}}\mathbb{I}_{f(x)>0} - \left(1 - \frac{\mathbb{I}_{a=-1,y=-1}}{1 - \pi - p_{1,-1}}\mathbb{I}_{f(x)<0}\right)\right]$$

where f is a real-valued function and define

$$\pi = P(y = +1)$$

$$1 - \pi = P(y = -1)$$

$$p_{1,1} = P(a = +1, y = +1)$$

$$p_{1,-1} = P(a = +1, y = -1)$$

11

Elmore Family School of Electrical and Computer Engineering

Methodology

Fairness-Aware Online Positive-Unlabeled Learning (FOPU)

Convex Equalized Odd Loss

Use Convex-Concave surrogate functions, $\kappa(z) = \max(z + 1, 0)$, $\delta(z) = \min(z, 1)$ based on empirical EOd,

$$\begin{split} R_{\text{EOd}}(f) &= \begin{cases} EOd_{\kappa}(f) & \text{if } EOd(f) \ge 0\\ EOd_{\delta}(f) & \text{if } EOd(f) < 0 \end{cases} \\ EOd_{\kappa}(f) &= \mathbb{E}\Big[\frac{\mathbb{I}_{a=1,y=1}}{p_{1,1}}\kappa(f(x)) - \left(1 - \frac{\mathbb{I}_{a=-1,y=1}}{\pi - p_{1,1}}\kappa(-f(x))\right)\Big] + \mathbb{E}\Big[\frac{\mathbb{I}_{a=1,y=-1}}{p_{1,-1}}\kappa(f(x)) - \left(1 - \frac{\mathbb{I}_{a=-1,y=-1}}{1 - \pi - p_{1,-1}}\kappa(-f(x))\right)\Big] \\ EOd_{\delta}(f) &= \mathbb{E}\Big[\frac{\mathbb{I}_{a=1,y=1}}{p_{1,1}}\delta(f(x)) - \left(1 - \frac{\mathbb{I}_{a=-1,y=1}}{\pi - p_{1,1}}\delta(-f(x))\right)\Big] + \mathbb{E}\Big[\frac{\mathbb{I}_{a=1,y=-1}}{p_{1,-1}}\delta(f(x)) - \left(1 - \frac{\mathbb{I}_{a=-1,y=-1}}{1 - \pi - p_{1,-1}}\delta(-f(x))\right)\Big] \end{split}$$

Methodology

Fairness-Aware Online Positive-Unlabeled Learning (FOPU)

$$EOd = |TPR_{a=1} - TPR_{a=-1}| + |FPR_{a=1} - FPR_{a=-1}|$$

■ Positive Rate Penalty Loss

- Minimizing ΔEOd can sometimes lead to a decrease in TPR or an increase in FPR.
- The positive rate penalty encourages higher TPR and lower FPR.

Experiments & Analysis

Adaptability of FOPU

Apply FOPU to Linear, MLP, LSTM, BERT and DistillBERT

FOPU improves fairness while maintaining performance (F1 score)

Theoretical Analysis

Fair Regret Bound

Fair Regret Bound in Online Learning

• **Regret Bound:** Measures how much a learning algorithm's performance deviates

from the batch training over time. $Regret = \sum_{t=1}^{T} \mathbb{E}[R(f_t) - R(f_{off})]$

- Fair Regret Bound: Ensuring that the model's cumulative fairness violations.
 - Linear Classifier's Fair Regret Bound: $O(\sqrt{T}/b)$ T: Total Number of Training Round
 B: Batch Size of Incoming Data
 MLP Classifier's Fair Regret Bound: $O(\sqrt{T \log L} + \sqrt{T}/b)$ L: Number of Layers
 - Pretrained Networks (e.g., BERT) with Linear Classifier: $O(\sqrt{T}/b)$

Conclusion

- Developed a fairness-aware online PU learning framework with a theoretical fair regret bound.
- Demonstrated improved fairness (lower ΔEOd) without compromising classification performance.
- Provided a practical solution for real-time applications in text classification, adapting efficiently to new data for various datasets and models.

Thank You

Hoin Jung jung414@purdue.edu

Elmore Family School of Electrical and Computer Engineering