Fairness-Aware Online Positive-Unlabeled Learning

Hoin Jung, Xiaogian Wang

Elmore Family School of Electrical
and Computer Engineering

@ PURDUE

UNIVERSITY.




Background

" In the real-world, traditional machine learning algorithms are not always adequate.
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Background

= Online Environment
= Data arrives incrementally, not all at once.

= Retraining from scratch with new data is costly and inefficient.

= Lack of Positivity
" |[n many situations, not all positive instances are explicitly labeled.

= Unlabeled samples may include both positive and negative cases.
e.g., On social media, only a portion of toxic content is flagged,
while other toxic posts remain unmarked.
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Background

Issues in Text Classification in Reality

* Imbalanced Positivity in Dataset (e.g. Wikipedia Toxicity Dataset)
= Certain keywords are often associated with toxicity.

" This can lead to overestimating toxicity if a content includes these specific terms.
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Background

" Fairness in Classification - Equalized Odds (EOd)

= A fairness criterion where a model's predictions are independent of a sensitive

attribute (e.g., gender, race) for each outcome.

" The model should have the same true positive rate and false positive rate across

different groups.
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Background

" Fairness in Classification - Equalized Odds (EOd)
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Background
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Problem Definition

" Online Learning

= A classifier is trained on newly arrived data continuously.

» Positive-Unlabeled (PU) Learning

" Train with positive and unlabeled set without explicit negativity.

= Unlabeled set could be predicted as either positive and negative.

= Both Online Learning and PU Learning Deteriorate Fairness Issue.
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Problem Definition

Fairness in Online & Positive-Unlabeled Learning

" Both Online Learning and PU Learning Deteriorate Fairness Issue.
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Problem Definition

Fairness in Online & Positive-Unlabeled Learning

" Both Online Learning and PU Learning Deteriorate Fairness Issue.
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Methodology

= Convex Equalized Odd Loss

For two sensitive attribute group a € {1, —1}, Equalized Odds is defined as
lZ()Ci ::Ijrl)leapzl —']rl)lea::—ll +'|]71)Iaa:il-— Irl)lea:b—ll

As a relaxed form, the EOd becomes
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Methodology

= Convex Equalized Odd Loss

Use Convex-Concave surrogate functions, k(z) = max(z + 1,0),5(z) = min(z, 1) based on empirical EOd,

(E0d,(f) ifE0d(f)> 0
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Methodology

EOd = |TPR;-y —TPR,4-_1| + |FPR,4- — FPR,-_||
" Positive Rate Penalty Loss

* Minimizing AEOd can sometimes lead to a decrease in TPR or an increase in FPR.

" The positive rate penalty encourages higher TPR and lower FPR.

LY = max(0,TPR?%5¢ —~ TPR\")) + max(0, TPR2?*¢ - TPR") + max(FPR\" — FPR?%*¢,0) + max(FPR\" — FPR:%¢,0)
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Experiments & Analysis

= Apply FOPU to Linear, MLP, LSTM, BERT and DistilIBERT
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Theoretical Analysis

" Fair Regret Bound in Online Learning
= Regret Bound: Measures how much a learning algorithm’s performance deviates

from the batch training over time. Regret = Y.I_; E[R(f;) — R(fors)]

" Fair Regret Bound: Ensuring that the model’s cumulative fairness violations.

= Linear Classifier’s Fair Regret Bound: O(NT/b) T Total Number of Training Round
B: Batch Size of Incoming Data

MLP Classifier’s Fair Regret Bound: O ({/T log L + VT /b) L: Numberof Layers

" Pretrained Networks (e.g., BERT) with Linear Classifier: 0(‘/7/19)
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Conclusion

* Developed a fairness-aware online PU learning framework with a theoretical fair
regret bound.

 Demonstrated improved fairness (lower AEOd) without compromising
classification performance.

* Provided a practical solution for real-time applications in text classification,

adapting efficiently to new data for various datasets and models.
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