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1 Supplementary Material

1.1 Dataset
The WorldTree corpus is a corpus of elementary science questions in a multiple-choice format. For each
question, the following data is available -

• All the possible answer choices, including the correct answer and the other distracting answers.
The distracting answers are also relevant to the question and cannot be eliminated by simple lexical
overlap methods.

• The ‘gold’ explanations, i.e., the explanations that correctly explain the answer given the ques-
tion. There are between 1 and 16 gold explanations for each question, with an average of 6 gold
explanations.

• The ‘role’ of each gold explanation - one of CENTRAL (core concepts), GROUNDING (linking core
facts to the question), and LEXICAL GLUE (linking facts which may not have lexical overlap).

In the provided dataset, to measure the performance of the system over different types of explanations, the
explanations are further categorized into classes. These classes differ in the importance of the explanation
in explaining the correct answer. These categories are Central, Grounding, and Lexical Glue. Central
facts are often the core scientific facts required for answering the question. Grounding facts are facts that
connect to other core scientific facts. These explanatory facts must be retrieved from a semi-structured
knowledge base - in which the surface form of the explanation is represented as a series of terms gathered
by their functional role in the explanation.

1.2 Previous Work
In the previous edition of Textgraphs-13, (Das et al., 2019) trained a ranker that uses a contextualized
representation of facts to score its relevance for explaining an answer to a question a language model to
re-rank the initial. While (Banerjee, 2019) used the approach which consists of modeling the explanation
regeneration task as a learning to rank problem and utilize an iterative reranking based approach to further
improve the rankings. Also, (Chia et al., 2019) have used an optimized version of TFIDF and a BERT
based reranker.

1.3 Pretrained Language Models
1.3.1 BERT
BERT (Devlin et al., 2018), Pre-training of Deep Bidirectional Transformers for Language Understand-
ing, was the first of its kind, a pre-trained language model based on the Transformer architecture (Vaswani
et al., 2017) that achieved state of the art performance on a wide variety of tasks such as GLUE (Wang
et al., 2018), SQuAD (Rajpurkar et al., 2018) and MultiNLI (Williams et al., 2018). Since the enor-
mous success of BERT, other attempts have been made to build on this idea and further improve perfor-
mance on NLP tasks by leveraging pre-trained Transformer based language models, and to investigate
how BERT achieves the great performance it does (“BERTology”). We used the pre-trained model
BERTForSequenceClassification as a baseline with the BERT − base− uncased configuration,
which gave us a score of 0.4506 MAP when trained on top k as 150 and batch size as 256 for 3 epochs.



1.3.2 ALBERT

ALBERT (Lan et al., 2020), A Lite BERT for Self-supervised Learning of Language Representations,
proposed parameter reduction techniques to lower memory requirements and training time as compared
to BERT while maintaining the performance. We applied this model in the hope that we could achieve a
similar MAP score with lesser computation and training. We used AlbertForSequenceClassification
with the albert − base − v2 and albert − large − v configs. We obtain a score of 0.4731 MAP when
trained with albert-large-v2 with top k as 100 and batch size 100.

Pre-Trained Model Layers Hidden Layers Attention Heads Parameters
bert-base-uncased 12-layer 768-hidden 12-heads 110M parameters

roberta-base 12-layer 768-hidden 12-heads 125M parameters
distilbert-base-uncased 6-layer 768-hidden 12-heads 66M parameters

albert-base-v2 12 layers 768-hidden 12-heads 11M parameters
albert-large-v2 24 layers 1024-hidden 16-heads 17M parameters

facebook/bart-base 12-layer 768-hidden 16-heads 139M parameters

Table 1: Pre-trained Language Models

1.3.3 DistilBERT

DistilBERT (Sanh et al., 2020), A Distilled version of BERT: smaller, faster, cheaper and lighter, lever-
ages knowledge distillation during the pre-training phase of BERT, and shows that it is possible to
reduce the size of a BERT model by 40%, while retaining 97% of its language understanding capa-
bilities and being 60% faster. It is mainly aimed at computationally constrained use cases such as
on-the-device training and inference. As in the case of ALBERT, we applied DistilBERT to see if
we could get similar performance to BERT with lesser training time and memory usage. We used
DistilBertForSequenceClassification with the distilbert− base−uncased config and got a score
of 0.4641 MAP on hidden test dataset with top k as 100 and number of epochs as 3 with batch size 256.

1.3.4 SciBERT

SciBERT (Beltagy et al., 2019), A Pre Trained Language Model for Scientific Text, SciBERT lever-
ages a large corpus of scientific publications to improve performance on downstream scientific NLP
tasks, achieving SOTA performance on a number of scientific datasets. Given the nature of the
questions in the WorldTree corpus, we suspected that it may outperform generic models. We used
AutoModelForSequenceClassification with the allenai/scibert scivocab uncased config and
achieved a score of 0.4855 MAP which is quite remarkable because it has very less parameters and
was trained only for top k of 100 and has performed as good as BART trained on top k 500. So one can
further improve the score by training it for top k 500 which we could not do due to time constraints.

1.3.5 ELECTRA

ELECTRA (Clark et al., 2020), Pre-training Text Encoders as Discriminators rather than Generators,
proposes a new pre-training approach which trains two transformer models: the generator and the dis-
criminator. The generator’s role is to replace tokens in a sequence, and is therefore trained as a masked
language model. The discriminator tries to identify which tokens were replaced by the generator in the se-
quence. ELECTRA was able to match the performance of RoBERTa and XLNet with less than 1/4 times
the computing power and outperform them using the same compute. It was also able to outperform GPT
(which uses 30 times as much compute) on GLUE. We achieved remarkable results with top k 100 on 3
epochs of training. We couldn’t train it on a higher number of explanations because of computational con-
straints. We used ElectraForSequenceClassification with the google/electra− large−generator
config and top k as 100, training it for 3 epochs to get a final score of 0.4854 MAP on the hidden test
dataset.



1.3.6 BART
BART (Lewis et al., 2020), Denoising Sequence-to-Sequence Pre-training for Natural Language Gener-
ation, Translation, and Comprehension, uses a standard seq2seq/machine translation architecture with a
bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). The pre-training task involves
randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of
text are replaced with a single mask token. It matches the performance of RoBERTa with comparable
training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstrac-
tive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. We used
BartForSequenceClassification with the facebook/bart − base config for 3 epochs first in top k
100 and then for top k 300 to get a boost of score from 0.4679 MAP to 0.4865 MAP.

1.3.7 RoBERTa
RoBERTa (Liu et al., 2019), A Robustly Optimized BERT Pretraining Approach, revealed that BERT was
significantly under-trained. By improving key hyper-parameter choices, (Liu et al., 2019) we were able
to show that BERT can match and even improve on a number of the models that were proposed after it,
achieving SOTA performance on GLUE, SQuAD and RACE (Lai et al., 2017). We used the pre-trained
RobertaForSequenceClassification for classification, with the roberta − base config, which gave
us a score of 0.4902 MAP when trained on top k as 500 and batch size as 256. The model took 8 hours
to run and this was our leaderboard submission. Then we further optimized it by varying the parameters
to get our highest score of 0.5061 MAP which we submitted after the end of evaluation round.
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