
Controlled Text Generation with Adversarial Learning

Federico Betti
Politecnico di Milano

federico.betti@mail.polimi.it

Giorgia Ramponi
Politecnico di Milano

giorgia.ramponi@polimi.it

Massimo Piccardi
University of Technology Sydney

massimo.piccardi@uts.edu.au

Abstract

In recent years, generative adversarial net-
works (GANs) have started to attain promis-
ing results also in natural language genera-
tion. However, the existing models have paid
limited attention to the semantic coherence of
the generated sentences. For this reason, in
this paper we propose a novel network – the
Controlled TExt generation Relational Mem-
ory GAN (CTERM-GAN) – that uses an ex-
ternal input to influence the coherence of sen-
tence generation. The network is composed of
three main components: a generator based on
a Relational Memory conditioned on the ex-
ternal input; a syntactic discriminator which
learns to discriminate between real and gener-
ated sentences; and a semantic discriminator
which assesses the coherence with the external
conditioning. Our experiments on six probing
datasets have showed that the model has been
able to achieve interesting results, retaining or
improving the syntactic quality of the gener-
ated sentences while significantly improving
their semantic coherence with the given input.

1 Introduction

Natural language generation (NLG) is gaining in-
creasing attention in the NLP community thanks to
its intriguing complexity and central role in many
tasks and applications. Recently, generative adver-
sarial networks (GANs) [7] have started to display
promising performance also in NLG. GANs lever-
age a form of adversarial learning where a genera-
tor incrementally learns to generate realistic sam-
ples, while a discriminator simultaneously learns
to discriminate between real and generated data.
They had originally been proposed as a generative
approach for continuous data, such as images, but
have later found application also for discrete data,
despite their well-known “non-differentiability is-
sue”. In fact, several GANs have recently been
proposed for text generation [24, 16, 25] and have

achieved encouraging results in comparison to com-
parable maximum likelihood approaches; in partic-
ular, RelGAN [16] has outperformed state-of-the-
art (SOTA) results.

In general, an effective NLG model should enjoy
two main properties: the syntactic correctness and
the semantic coherence of the generated sentences.
Although both these aspects are key for the usabil-
ity of NLG models, often only the syntactic aspect
is taken into account during training and evaluation.
For this reason, in this paper we propose a new
model – the Controlled TExt generation Relational
Memory GAN (CTERM-GAN) – which explic-
itly takes into account both syntactic and semantic
aspects. CTERM-GAN consists of the following
main modules: 1) a generator based on a relational
memory with self-attention conditioned on an exter-
nal input; 2) a syntax discriminator which learns to
discriminate between real and generated sentences
based on syntactic correctness; and 3) a semantic
discriminator trained to assess whether a sentence
is coherent with the external conditioning. Like a
conventional NLG GAN, this model is trained to
generate syntactically-correct sentences; however,
the inclusion of both a second discriminator and a
generator influenced by an external input allows im-
proving the coherence of the generated sentences.
The experimental results in Section 4 show that
the proposed model has been able to retain or in-
crease syntactic accuracy while at the same time
drastically improving semantic coherence.

2 Related Work

Using GANs for discrete data generation is still a
developing research area. The two main research
directions are along reinforcement learning (RL)-
based and reparametrization-based models. The
former use RL algorithms to circumvent the non-
differentiability issue and include SeqGAN [24]

and several other models [8, 13, 3]. The latter,
instead, leverage continuous approximations of dis-
crete sampling [25, 4, 16]. Recently, RelGAN [16]
has introduced a Gumbel-softmax relaxation of
discrete sampling [11], alongside a multiple dis-
criminator model to extract different features from
the sentences. RelGAN has outperformed all other
compared GAN models on a variety of challenging
datasets. The idea of using external conditioning to
improve or control NLG has also been widely ex-
plored [6, 22, 20, 21]. For instance, TopicRNN [6]
increases the probability of words related to a con-
trol topic during sentence generation. SentiGAN
[20] has proposed a model that generates sentences
conditioned on a sentiment by using multiple gen-
erators, one per sentiment, and a multi-label dis-
criminator. TCNLM [21] uses a neural topic model
to first extract the latent topic, and then feeds it to
a mixture of expert language models, each special-
ized for an individual topic. Differently from them,
in our model we use a single generator that controls
the text generation by means of a Relational Mem-
ory which has been exposed to the conditioning
input. In turn, two distinct discriminators respec-
tively assess the syntactic quality and coherence to
the input of the generated sentences. Our model
is independent of the specific nature of the con-
ditioning input and, as such, it is the only one to
date that can be used for both topic-conditioned and
sentiment-conditioned generation, and, in principle,
other flavors.

3 Model

This section presents the main details of CTERM-
GAN (namely, the generator and the syntax and
semantic discriminators). 1

3.1 Loss function

As training loss, we have used a non-saturating
GAN loss function [7], that, considering the double-
discriminator model, is extended as:

lD =
1

m

m∑
i=1

[(
log(DS(xr)) + log(1−DS(G(xz)))

)
+ β

(
log(DT (xr)) + log(1−DT (G(xz)))

)]

1All the training information and hyperparameters are de-
scribed in Appendix D. We will release all our code publicly
after the anonymity period.

c

Relational
Memory

yt-1

ot-1
yt

Gumbel yt

Generator

Syntax
Discriminator

ß

Semantic
Discriminator

c

Loss

True Data

Figure 1: CTERM-GAN architecture

lG =
1

m

m∑
i=1

[
− log(DS(G(xz)))− β log(DT (G(xz)))

]

where β is a hyperparameter that assigns a relative
weight to the topic discriminator with respect to
the syntax one. β plays an important role during
training since, if it is too low, the model ignores the
conditioning due to the limited penalty. Conversely,
a too high a value would give too much importance
to the conditioning, affecting the quality of the
generated sentence.

3.2 Generator

The generator is based on a Relational Memory
with self-attention [18, 16]. This model updates its
“internal values” and produces its final output by se-
lecting from its memory cells with a self-attention
mechanism. Leveraging an idea similar to that of
image-based conditional GANs [15], we introduce
an external conditioning into the generator. First,
given the conditioning input c ∈ Rd, the model
computes an embedding γt for c using function
fθ : Rd → Rm, with m < d. Function fθ has been
implemented using a feed-forward neural network
with a self-attention layer. The conditioning vector
c may originate from any type of different source
as long as it remains consistent during the individ-
ual training. Depending on the required task, as
shown in the experiment phase, it will change. This
vector c is the only link between the conditioning
and the generative model; its influence on the final
output will be crucial for the conditioning of the
generated sentence. fθ has been adopted to give the
model the ability to learn the best manipulation of
the conditioning vector to insert into the memory.

Given the previous output yt−1 and the processed
conditioning γt at the current time-step, the mem-
ory updates its state, ht, using a double-step se-
quential update and computes the next value, ot, as
in Eqs. 1-2:

γt = fθ(c) (1)

ot, ht = fRM (ht−1, γt, yt−1) (2)

where fRM represents the memory cell update.
The distribution over the vocabulary of the next
word is evaluated using the memory output ot as
in Eq. 3 with a feed-forward layer. Then, the
next soft word, ŷt, is sampled using the Gumbel-
softmax relaxation [11] with temperature T (Eq.
4). The temperature value greatly influences the
quality-diversity trade-off; more details on these
parameters are provided in Appendix D.

ȳt = fα(ot) (3)

ŷt ∼ Gumbel-softmax(ȳt, T) (4)

3.3 Syntax discriminator
The syntax discriminator takes as input either a
real sentence, r = (r1, . . . , rn), or a generated one,
g = (g1, . . . , gn). Similarly to many other works
(e.g., [9, 23]), the discriminator first transforms its
input into an embedding matrix. This embedding
allows learning a transformation that condenses the
information brought in by each word optimally for
any given task. The syntax discriminator is then
built using two convolutional layers with ReLU
activation functions, followed by a self-attention
layer, again followed by two other convolutional
layers with ReLU activation functions. The self-
attention layer is used to attend to the output of the
previous convolutional layer and select the most
useful features. The final layers generate the deci-
sion.

3.4 Semantic discriminator
One of the main novelties of our approach is the
explicit targeting of semantic coherence. This is
achieved by augmenting the model with a seman-
tic discriminator trained to recognize whether the
input sentence is consistent with the conditioning
input, c, or not. To produce its output, this discrim-
inator receives as input both c and either a real sen-
tence, r = (r1, . . . , rn), or the output of the gener-
ator, g = (g1, . . . , gn). The proposed architecture
is composed of two networks: one for the sentence
and one for input c. The first network consists of

a feed-forward layer which acts as an embedding,
followed by four convolutional and self-attention
layers with ReLU activation functions which ex-
tract a latent vector expected to represent the main
characteristics of the sentence. In the second net-
work, input c is passed through a linear layer to
suitably reduce or expand its size to that of the out-
put vector of the first network. The two outputs are
then combined and the final decision is computed
with a feed-forward layer.

4 Experiments

The CTERM-GAN model has been tested over two
tasks: topic conditioning and sentiment condition-
ing. The former consists of generation guided by
exogenous text input, while the latter focuses on
the generation of sentences given a sentiment.
In all experiments, we have separately trained the
generator for 150 epochs and the semantic discrimi-
nator for 300 epochs before the adversarial training
was started. After that, the generator has been
trained for 2 batches and the discriminators for 3
batches in each adversarial epoch. For the β weight
in the loss function, several values were tested and
the optimal value was found to be 0.1.

4.1 Topic conditioning

In these experiments we have compared the condi-
tioned text generation of CTERM-GAN with that
of the state-of-the-art adversarial architectures – Se-
qGAN [24], RelGAN [16], and TGVAE [22] – and
a classic auto-regressive LSTM language model
with an initial conditioning, in terms of both syn-
tactic and semantic quality. The main goal is to
ensure a good quality for the generation by intro-
ducing a conditioning on the semantic of the sen-
tence. In this task, the conditioning consists of the
word distribution for a topic extracted from a sen-
tence, either provided by the user or, as in our case,
sampled from the dataset. Any type of topic model
can be adopted: in our case, an LDA model [2] has
been trained on a starting dataset in order to have a
distribution of the topics covered within the corpus.
The LDA model, both in training and in inference,
given an input sentence, builds a distribution on the
vocabulary. In turn, this distribution influences the
model’s sentence generation thanks to its inclusion
in the generation process. Most likely, improving
the quality of the topic extraction is likely to im-
prove the final results of the model. Eventually,
the extracted distribution is used as the condition-

Dataset Image COCO EMNLP APNews BNC
Train size 10000 270000 54000 15000
Test size 10000 10000 2000 1000

Sequence Length 37 51 1801 105550
Train Vocabulary 6612 5230 32430 41496
Topic Vocabulary 3872 4265 8564 10345

Table 1: Topic Conditioning datasets.

Model COCO EMNLP News APNews BNC
B-2 B-4 KL B-2 B-4 KL B-2 B-4 KL B-2 B-4 KL

LSTM Topic 0.734 0.315 0.104 0.532 0.107 0.155 0.689 0.196 0.060 0.688 0.203 6.69e-4
RelGAN 0.752 0.339 0.468 0.675 0.339 0.941 0.738 0.258 0.291 0.760 0.282 8.89e-4
TGVAE (T=10) - - - - - - 0.584 0.202 - 0.518 0.173 -
TGVAE (T=50) - - - - - - 0.629 0.210 - 0.535 0.188 -
CTERM GAN 0.782 0.404 0.053 0.738 0.326 0.447 0.794 0.341 0.194 0.761 0.242 7.62e-4

Table 2: Topic conditioning results. The values for TGVAE are reproduced from [22] where KL values are not
available.

ing input, c, for the relational memory during the
generation, as described in Section 3.

Datasets To evaluate the topic-conditioned text
generation we have used four benchmark datasets:
COCO Image Caption [5], EMNLP2017 WMT
News [9], APNews 2 and BNC [1]. The COCO
Image Caption dataset is composed of image cap-
tions that we have preprocessed following [26].
The EMNLP2017 WMT News dataset consists of
longer sentences than COCO’s that were also pre-
processed according to [26]. APNews is a dataset
of Associated Press’ news articles from 2009 to
2016, and the BNC dataset is the written portion
of the British National Corpus. These datasets are
highly diverse in terms of type of texts, covering
books, essays, journals and news. More specific in-
formation about these datasets are shown in Table
4.

Evaluation As evaluation measures, we have
adopted corpus BLEU [17] to assess syntactic qual-
ity and the Kullback-Leibler (KL) divergence [12]
between the topic used for conditioning and the
topic extracted from the generated sentence to as-
sess semantic coherence. A low KL value means
that the distribution inferred from the output of the
model is similar to the one extracted from the con-
ditioning input sentence and used as conditioning
vector c. This implies that the semantic condition-
ing has been carried out successfully.

Results Table 2 shows the results of the topic-
conditioning experiments over the four datasets.

2https://www.ap.org/en-gb/

The BLEU results (columns B-2, B-4) empirically
demonstrate that the syntactic quality of the text
generated by CTERM-GAN is often superior to
that of the state-of-the-art GANs for text genera-
tion. The results for TGVAE are shown for both 10
topics, as used for CTERM-GAN , and for its best
reported configuration. In turn, the KL results show
that CTERM-GAN has also achieved better coher-
ence to the conditioning topic than RelGAN for
all datasets. For some datasets, the LSTM-based
model has obtained a lower (i.e. better) divergence,
yet at a considerable reduction in terms of BLEU
scores.

4.2 Sentiment conditioning

In these experiments we have compared the
sentiment-conditioned text generation of CTERM-
GAN with that of SeqGAN [24], SentiGAN [20]
and an RNNLM baseline [14]. Following the ex-
periments carried out in [20], the conditioning has
been performed based on only two sentiments, pos-
itive or negative. In this case, the conditioning
vector, c, taken as input by CTERM-GAN is a
one-hot binary variable representing the desired
sentiment. The RNNLM and SeqGAN models
have been trained separately on the two sentiments
by treating positive and negative sentences as two
separate datasets, while SentiGAN and the pro-
posed model have been trained jointly. This pro-
cedure makes the results comparable although it is
clear how the flexibility of SentiGAN and CTERM-
GAN makes these models more general.

https://www.ap.org/en-gb/

Model CR MR
Sentiment Novelty Diversity Sentiment Novelty Diversity

RNNLM 0.552 0.399 0.663 0.662 0.267 0.691
SeqGAN 0.632 0.437 0.619 0.717 0.298 0.641
SentiGAN (k=1) 0.731 0.479 0.668 0.803 0.344 0.711
SentiGAN (k=2) 0.803 0.549 0.741 0.885 0.395 0.741
CTERM GAN 0.869 0.539 0.746 0.885 0.270 0.700

Table 3: Sentiment conditioning results. The values of models other than CTERM-GAN are reproduced from [20].

Dataset We have used two datasets, Movie Re-
views (MR) [19] and Customer Reviews (CR) [10],
where individual sentences are annotated as either
positive or negative. The Movie Reviews dataset
consists of user reviews of movies, with 2, 133 pos-
itive and 2, 370 negative sentences. The Customer
Reviews dataset consists of 1, 500 reviews of prod-
ucts sold online, with positive/negative annotation
at sentence level. For this task, only sentences of
length shorter than 15 words have been retained, to
be able to use the same preprocessing as [20].

Evaluation For this task, we have classified the
generated sentences in terms of their sentiment us-
ing a Bidirectional-LSTM as classifier. In addition,
we have evaluated two quality metrics: 1) the nov-
elty of each generated sentence (Eq. 5) using the
definition from [20], where JS is the Jaccard sim-
ilarity and Cj are the training set sentences. The
novelty measures the diversity between the gener-
ated data and the training corpus; and 2) the diver-
sity metric (Eq. 6), a measure of the model’s ability
to generate diverse sentences and avoid mode col-
lapse.

Novelty(Si) = 1−max{JS(Si, Cj)}j=|C|j=1 (5)

Diversity(Si) = 1−max{JS(Si, Sj)}j=|S|, j 6=ij=1

(6)

Results Table 3 shows the results from the
sentiment-conditioned experiments. CTERM-
GAN has been able to achieve a remarkable per-
formance trade-off, with the best sentiment classifi-
cation accuracy and diversity over the CR dataset,
and the same sentiment classification accuracy as
SentiGAN (k=2) on the MR dataset, yet with sig-
nificantly decreased novelty and diversity. While
the performance of CTERM-GAN and SentiGAN
may be regarded as comparable overall, we em-
phasize once again that the proposed model is not
specialized for sentiment conditioning or any spe-
cific types of conditioning.

5 Conclusion

In this short paper we have proposed the Con-
trolled TExt generation Relational Memory GAN
(CTERM-GAN), a model aiming to generate sen-
tences that are both syntactically correct and seman-
tically coherent. The proposed model leverages a
Relational Memory that is influenced by a condi-
tioning input and is used to generate sentences,
alongside two discriminators that respectively as-
sess the sentences’ syntactic quality and semantic
coherence. The experimental results over topic-
conditioned and sentiment-conditioned tasks have
shown that the proposed model has performed at
the same level or above that of SOTA GANs and rel-
evant baselines. In the near future, we will explore
text generation with other type of conditioning in-
puts such as writer’s style and images to further
probe the generality of the proposed model.

6 Acknowledgment

We thank Professor Stefano Ceri for the support,
and the valuable comments and ideas.

References
[1] The British National Corpus, version 3 (bnc xml edi-

tion). In Distributed by Bodleian Libraries, Univer-
sity of Oxford, on behalf of the BNC Consortium.,
2007.

[2] David M. Blei, Andrew Y. Ng, and Michael I. Jor-
dan. Latent Dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022, March 2003.

[3] Tong Che, Yanran Li, Ruixiang Zhang, R Devon
Hjelm, Wenjie Li, Yangqiu Song, and Yoshua Ben-
gio. Maximum-likelihood augmented discrete gen-
erative adversarial networks. arXiv:1702.07983,
2017.

[4] Liqun Chen, Shuyang Dai, Chenyang Tao, Dinghan
Shen, Zhe Gan, Haichao Zhang, Yizhe Zhang, and
Lawrence Carin. Adversarial text generation via
feature-mover’s distance. arXiv:1809.06297, 2018.

[5] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollár,

and C Lawrence Zitnick. Microsoft COCO
captions: Data collection and evaluation server.
arXiv:1504.00325, 2015.

[6] Adji B Dieng, Chong Wang, Jianfeng Gao, and
John Paisley. TopicRNN: a recurrent neural net-
work with long-range semantic dependency. arXiv:
1611.01702, 2016.

[7] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative
Adversarial Networks. arXiv: 1406.2661, 2014.

[8] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang,
Yong Yu, and Jun Wang. Long Text Generation
via Adversarial Training with Leaked Information.
arXiv:1709.08624, 2017.

[9] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong
Yu, and Jun Wang. Long text generation via adver-
sarial training with leaked information. In Thirty-
Second AAAI Conference on Artificial Intelligence,
2018.

[10] Minqing Hu and Bing Liu. Mining and summariz-
ing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’04, pages
168–177, New York, NY, USA, 2004. ACM.

[11] Eric Jang, Shixiang Gu, and Ben Poole. Cat-
egorical reparameterization with gumbel-softmax.
arXiv:1611.01144, 2016.

[12] Solomon Kullback and Richard A Leibler. On in-
formation and sufficiency. The Annals of Mathemat-
ical Statistics, 22(1):79–86, 1951.

[13] Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou
Zhang, and Ming-Ting Sun. Adversarial ranking for
language generation. CoRR, abs/1705.11001, 2017.

[14] Tomas Mikolov, Martin Karafiat, Lukas Burget,
Jan Cernocky, and Sanjeev Khudanpur. Recurrent
neural network based language model. INTER-
SPEECH 2010, 2010.

[15] Mehdi Mirza and Simon Osindero. Conditional
generative adversarial nets. arXiv:1411.1784, 2014.

[16] Weili Nie, Nina Narodytska, and Ankit B. Pa-
tel. RelGAN: Relational Generative Adversarial
Networks for Text Generation. ICLR 2019, pages
1–20, 2019.

[17] Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th ACL, pages 311–318. Association for Compu-
tational Linguistics, 2002.

[18] Adam Santoro, Ryan Faulkner, David Raposo,
Jack Rae, Mike Chrzanowski, Théophane Weber,
Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and
Timothy Lillicrap. Relational recurrent neural net-
works. 2018.

[19] Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for se-
mantic compositionality over a sentiment treebank.
In Proceedings of EMNLP 2013, pages 1631–1642,
2013.

[20] Ke Wang and Xiaojun Wan. SentiGAN: Generat-
ing Sentimental Texts via Mixture Adversarial Net-
works. In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence,
pages 4446–4452, 2018.

[21] Wenlin Wang, Zhe Gan, Wenqi Wang, Dinghan
Shen, Jiaji Huang, Wei Ping, Sanjeev Satheesh, and
Lawrence Carin. Topic Compositional Neural Lan-
guage Model. arXiv:1712.09783, 2018.

[22] Wenlin Wang, Zhe Gan, Hongteng Xu, Ruiyi
Zhang, Guoyin Wang, Dinghan Shen, Changyou
Chen, and Lawrence Carin. Topic-guided vari-
ational autoencoders for text generation. CoRR,
abs/1903.07137, 2019.

[23] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
SeqGAN: Sequence Generative Adversarial Nets
with Policy Gradient. arXiv:1609.05473, 2016.

[24] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
SeqGAN: Sequence generative adversarial nets with
policy gradient. In Thirty-First AAAI Conference on
Artificial Intelligence, pages 2852–2858, 2017.

[25] Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ri-
cardo Henao, Dinghan Shen, and Lawrence Carin.
Adversarial feature matching for text generation. In
Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 4006–4015.
JMLR. org, 2017.

[26] Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. Texygen:
A benchmarking platform for text generation mod-
els. CoRR, abs/1802.01886, 2018.

Appendix
A Datasets Information

Additional information about the datasets used for conditioned text generation are presented in Table 4.
The data fed into the topic model were preprocessed by removing stop-words and punctuation so as to
retain only those words that provided semantic information. Moreover, only for the biggest corpora, the
top 0.1% frequent words and the words that appeared in less than 100 documents have been removed.
The sequence length has been capped to 60 in the APNews and BNC datasets for computational reasons.

Dataset Image COCO EMNLP APNews BNC
Training Size 10000 270000 54000 15000

Test Size 10000 10000 2000 1000
Sequence Length 37 51 1801 105550

Training Vocabulary 6612 5230 32430 41496
Topic Vocabulary 3872 4265 8564 10345

Table 4: Text generation dataset information.

Dataset MR CR
Positive Sent. 2,133 1,024
Negative Sent. 2,370 501

Table 5: Sentiment generation dataset information.

B Generated Sentences

Tables 6 and 7 show examples of generated sentences from the COCO and CR datasets.

COCO Dataset
Generated Conditioning

handicapped bathroom features a tub and sink in a
bathroom mirror .

entryway to a bathroom , toilet and sink prominent

a large passenger jet flying through the sky . contrails can be seen from a descending jet .
a white kitchen with white walls and counter tops . a kitchen with tiled floors and counter tops

Table 6: Examples from the COCO dataset: generated and conditioning sentence.

C Model Details

The self-attention layer (Eq. 1) is used to adjust the content extracted from the conditioning vector γ̃ at
word level. Three matrices are created and updated during training: Q queries, K keys and V values. The
final value y is computed as in Eq. 7:

y = σ

(
f(Qx ·Kx)

)
· V x (7)

considering f as a normalization function and σ the softmax function.

D Training Details

In every experiment, we separately train the generator for 150 epochs and the semantic discriminator for
300 epochs before the adversarial training is started. After that, the generator is trained for 2 batches and
the discriminators for 3 batches in each adversarial epoch.

CR Dataset

Positive
as said before this works perfectly .
the nokia 6600 is a decent extension of the smartphone line .

Negative
overall , the player is crap .
this is a terrible company with a bad product .

Table 7: Examples of generated sentences for the CR dataset.

We have obtained the best results with the non-saturating loss [7], adding a component derived from the
sentiment discriminator with a weight of β. Several values were tested for β, and the optimal value was
found to be 0.1, as shown in Fig. 2. Other details are in Appendix E.

0 500 1000 1500 2000 2500

0.6

0.65

0.7

0.75

0.8

0.01
0.1
1
10

Epoch

B
LE

U
 2

Figure 2: BLEU 2 score for different values of β.

The temperature, T , of the Gumbel-softmax operator allows us to trade off quality and diversity of the
generated sentences. A high temperature produces a one-hot-like vector, while a lower temperature yields
an output that takes into account several different values. A lower temperature, thus, allows for better
diversity in generation; often a rising temperature is preferred during training in order to have more initial
exploration and better exploitation afterwards. Considering that the value comes into direct contact with
the weight gradient, having a lower temperature allows a smoother procedure that makes it easier for the
model to converge.

Function fα, shown in Eq. 3, maps the memory output at time t to values in RV . We have modeled fα
as a feed-forward neural network. The output of the memory depends on the size of the memory itself; in
the experiments we have directly used the memory cells reshaped into one dimension. The number of
memory cells is a hyperparameter of the model. We have tested with 512 and 1024 cells; the 1024 cells
version showed slightly better results at the cost of a model with almost twice the number of parameters.

The Gumbel-softmax operation is shown in Eq. 8. It is fundamental for the input ȳt not to be a
distribution in RV , otherwise the uniform noise would be the dominating component of the final output.
This would lead to a completely random model.

Ut ∼ Uniform(0, 1)

gt = −log(−log Ut)
yt = σ((ȳt + gt)/T)

(8)

with σ the softmax function.

E Loss

The loss function used is crucial for the final result. The real advantage of adversarial models is that
the discriminators can create new architectures with personalized loss functions that they learn during
training.

Tests were performed using a non-saturating GAN loss function [7], shown in Eq. 9

lD =
1

m

m∑
i=1

[
log(D(xr)) + log(1−D(G(xz)))

]

lG =
1

m

m∑
i=1

[
− log(D(G(xz)))

] (9)

but considering the double-discriminator model, it is transformed in:

lD =
1

m

m∑
i=1

[(
log(DS(xr)) + log(1−DS(G(xz)))

)
+ β

(
log(DT (xr)) + log(1−DT (G(xz)))

)]
lG =

1

m

m∑
i=1

[(
− log(DS(G(xz)))

)
+ β

(
− log(DT (G(xz)))

)] (10)

where β is a hyperparameter that assigns a relative weight to the topic discriminator with respect to the
syntax one. This hyperparameter plays an important role during training since, if it is too low, the model
ignores the conditioning because of the limited penalty. Conversely, a too high a value for β would give
too much importance to the conditioning, affecting the quality of the generated sentence.

F Topic Model

The topic model chosen to extract the topic from the control sentence is LDA. It has been trained
separately over each dataset before the GAN training procedure. The number of topics used has been
decided measuring the coherence over the dataset and taking the maximum value. Examples of coherence
values for the COCO and EMNLP datasets are shown in Fig. 3.

0 10 20 30 40 50

0.25

0.3

0.35

0.4

0.45

Epoch

u_
m

as
s

co
he

re
nc

e

0 10 20 30 40 50

0.1

0.2

0.3

0.4

Epoch

u_
m

as
s

co
he

re
nc

e

Figure 3: Cv coherence for the COCO and EMNLP datasets.

