
A Neural parameterization

In this appendix, we describe the different com-
ponents of our neural network. If unspecified, pa-
rameters are initialized with Pytorch default initial-
ization. We report the dimensions of the building
blocks of the network in Table 5. We use hyper-
parameters similar to Dozat and Manning (2016)
and did not perform any specific hyperparameter
tuning except for the BiLSTM hidden dimension
(which is larger in our case).

A.1 Word-level features

We use three kind of word-level features: word
embeddings, character embeddings and, for a few
experiments, part-of-speech embeddings. All em-
beddings are concatenated to form word-level em-
beddings.

Word embeddings can either be pre-trained or
trained end-to-end. In the case of pre-trained word
embeddings, we fix them and sum them with end-
to-end learned word embeddings initialized at 0.
We use the Glove pre-trianed word embeddings
(Pennington et al., 2014).

Character embeddings are fed to a BiLSTM. The
hidden states of the two endpoints are then concate-
nated together. Words are truncated to 20 charac-
ters for this feature.

A.2 Sentence-level features

We follow (Kiperwasser and Goldberg, 2016) by
using two stacked BiLSTM, i.e. the input of the
second BiLSTM is the concatenation of the for-
ward and backward hidden states of the first one.
All LSTMs have a single layer. Projection matrices
are initialized with the orthogonal approach pro-
posed by (Saxe et al., 2013) and bias vectors are
initialized to 0.

For models using Bert (Devlin et al., 2019), we
learn a convex combination of the last 4 layers,
in a similar spirit to ELMO. When word are tok-
enized in subwords by the Bert tokenizer, we use
the embedding of the first sub-token. We use the
pretrained models distributed by HuggingFace’s
Transformers library.12

A.3 Output weights

We have two different output layers. First, we pre-
dict part-of-speech tags with a linear projection
on top of the hidden states of the first BiLSTM.

12https://huggingface.co/transformers/

Name Dimension
Word embeddings 300
Character embeddings 64
Character BiLSTM 100
Character BiLSTMs layer 1
Sentence BiLSTMs 800
Sentence BiLSTMs layer 1
Sentence BiLSTMs stack 2
Span projection 500
Label projection 100

Table 5: Hyperparameters

During training, we use an auxiliary negative log-
likelihood loss. Second, after the second BiLSTM
we add the biaffine layers to compute span scores.

A.4 Training

The train/dev/test split follows prior work (cited in
the main text) with sizes:

• 39832/1700/2416 sentences for the Discontin-
uous Penn Treebank;

• 40472/5000/5000 sentences for the Tiger tree-
bank;

• 18602/1000/1000 sentences for the Negra tree-
bank.

We optimize the parameters with the Adam vari-
ant of stochastic gradient descent descent with mini-
batches containing at most 5000 words for 200
epochs. We apply dropout with ratio 0.3 before
the input of the character BiLSTM, before the first
stack of sentence-level BiLSTM and after the sec-
ond one by following the methodology of Dozat
and Manning (2016).

https://huggingface.co/transformers/

