
A Appendix on Results
A.1 Search Space Choices

Here, we provide more detail about our search
space choices.

A.1.1 Transformations
We consider three different ways of generating

substitute words:

1. Counter-fitted GLOVE word embedding
(Mrksic et al., 2016): For a given word, we
take its top N nearest neighbors in the embed-
ding space as its synonyms. 7

2. HowNet (Dong et al., 2010): HowNet is a
knowledge base of sememes in both Chinese
and English.

3. WordNet (Miller, 1995): WordNet is a lexical
database that contains knowledge about and
relationships between English words, includ-
ing synonyms.

A.1.2 Constraints
To preserve grammaticality, we require that the

two words being swapped have the same part-
of-speech (POS). This is determined by a part-
of-speech tagger provided by Flair (Akbik et al.,
2018), an open-source NLP library.

To preserve semantics, we consider three differ-
ent constraints:

1. Minimum cosine similarity of word embed-
dings: For the word embedding transforma-
tion, we require the cosine similarity of the
embeddings of the two words meet a mini-
mum threshold.

2. Minimum BERTScore (Zhang* et al., 2020):
We require that the F1 BERTScore between x
and x0 meet some minimum threshold value.

3. Universal Sentence Encoder (Cer et al., 2018):
We require that the angular similarity between
the sentence embeddings of x and x0 meet
some minimum threshold.

For word embedding similarity, BERTScore, and
USE similarity, we need to set the minimum thresh-
old value. We set all three values to be 0.9 based on
the observation reported by Morris et al. (2020b)
that high threshold values encourages strong se-
mantic similarity. We do not apply word embed-
ding similarity constraint for HowNet and WordNet
transformations because it is not guaranteed that

7We choose counter-fitted embeddings because they en-
code synonym/antonym representations better than vanilla
GLoVe embeddings (Mrksic et al., 2016).

we can map the substitute words generated from
the two sources to a word embedding space. We
can also assume that the substitute words are se-
mantically similar to the original words since they
originate from a curated knowledge base.

Lastly, for all attacks carried out, we do not allow
perturbing a word that has already been perturbed
and we do not perturbed pre-defined stop words.

A.1.3 Datasets
We compare search algorithms on three datasets:

the Movie Review and Yelp Polarity sentiment clas-
sification datasets and the SNLI entailment dataset.
Figure 3 shows a histogram of the number of words
in inputs from each dataset. We can see that inputs
from Yelp are generally much longer than inputs
from MR or SNLI.

A.2 Pseudocode for Search Algorithms
Before presenting the pseudocode of each search

algorithm, we define a subroutine called perturb
that takes text x and index i to produce set of per-
turbation x0 that satisfies the constraints. More
specifically, perturb is defined as following:

perturb(x, i) =

{T (x, i) | Cj(T (x, i)) 8j 2 {1, ...,m}}

where T (x, i) represents the transformation
method that swaps the ith word xi with its syn-
onym to produce perturbed textx0. C1, . . . , Cm

are constraints represented as Boolean functions.
Ci(x) = True means that text x satisfies con-
straint Ci.

Also, score(x) is the heuristic scoring function
that was defined in the section 3.2.

Greedy search with word importance ranking
requires subroutine for determining the importance
of each word in text x. We leave the details of
the importance functions to be found in individual
papers that have proposed them, including Gao
et al. (2018), Jin et al. (2019), Ren et al. (2019).

In genetic algorithm, each population member
represents a distinct text produced via perturb and
crossover operations. Genetic algorithm has a
subroutine called sample that takes in population
member p and randomly samples a word to trans-
form with probabilities proportional to the number
of synonyms a word has. Also, we modified the
crossover subroutine proposed by Alzantot et al.
(2018) to check if child produced by crossover



Figure 3: Histogram of words per dataset. Yelp inputs are generally much longer than inputs from MR or SNLI.

Algorithm 1 Beam Search with beam width b

Input: Original text x = (x1, x2, ...xn)
Output: Adversarial text xadv if found

best {x}
while best == ; do

Xcand ;

for all xb 2 best do
5: for all i 2 {1, . . . , n} do

Xcand Xcand [ perturb(xb, i)
end for

end for
if Xcand 6= ; then

10: x⇤ argmaxx02Xcand
score(x0)

if x⇤ fools the model then
return x⇤ as xadv

else
best {top b elements of Xcand}

15: . elements are ranked by their score
end if

else
End search

end if
20: end while

Algorithm 2 Greedy Search
Input: Original text x = (x1, x2, ...xn)
Output: Adversarial text xadv if found

x⇤ x
while xadv not found do

Xcand ;

for all i 2 {1, . . . , n} do
5: Xcand Xcand [ perturb(x⇤, i)

end for
if Xcand 6= ; then

x⇤ argmaxx02Xcand
score(x0)

if x⇤ fools the model then
10: return x⇤ as xadv

end if
else

End search
end if

15: end while

Algorithm 3 Greedy Search with Word Importance
Ranking
Input: Original text x = (x1, x2, ...xn)
Output: Adversarial text xadv if found

R ranking r1, . . . , rn of words x1, . . . , xn
by their importance
x⇤ x
for i = r1, r2, . . . , rn in R do

Xcand perturb(x⇤, i)
5: if Xcand 6= ; then

x⇤ argmaxx02Xcand
score(x0)

if x⇤ fools the model then
return x⇤ as xadv

end if
10: else

End search
end if

end for



operation passes constraints. If the child fails any
of the constraints, we retry the crossover for at
max 20 times. If that also fails to produce a child
that passes constraints, we randomly choose one
its parents to be the child with equal probability.

Algorithm 4 Genetic Algorithm (with population
size K and generation G)
Input: Original text x = (x1, x2, ...xn)
Output: Adversarial text xadv if found

for k = 1, . . . ,K do
i sample(x)
Xcand perturb(x, i)
P 0
k  argmaxx02Xcand

score(x0)
5: end for

for g = 1, . . . , G generations do
for k = 1, . . . ,K do

Sg�1
k  score(P g�1

k )
end for

10: x⇤ P g�1

argmaxj S
g�1
j

if x⇤ fools the model then
return x⇤ as xadv

else
P g
1  x⇤

15: p = Normalize(Sg�1)
for k = 2, . . . ,K do

par1 ⇠ P g�1 with prob p
par2 ⇠ P g�1 with prob p
child crossover(par1, par2)

20: i sample(child)
Xcand perturb(child, i)
P g
k  argmaxx02Xcand

score(x0)
end for

end if
25: end for

Lastly, we leave out the pseudocode for PSO due
to its complexity. More detail can be found in Zang
et al. (2020).

A.3 Analysis of Attacks against LSTM
Models

Figures 4 shows how the number of words in
the input affects runtime for each algorithm against

LSTM models. Figure 5 shows the attack success
rate of each search algorithm as the maximum num-
ber of queries permitted to perturb a single sample
varies from 0 to 20,000 for Yelp dataset and 0 to
3000 for MR and SNLI.
A.4 Evaluation of Adversarial Examples

Table 4 shows the average percentage of words
perturbed, average Universal Sentence Encoder
similarity score, and average percent change in
perplexity for all experiments.

B Future Work

Submodularity of transformer models. As men-
tioned in Section 5, our findings indicate that the
NLP attack problem may be approximately sub-
modular when dealing with transformer models. In
the image space, attacks designed to take advan-
tage of submodularity have achieved high query
efficiency (Moon et al., 2019). With the exception
of (Lei et al., 2019), attacks in NLP are yet to take
advantage of this submodular property.

Transformations beyond word-level. Most pro-
posed adversarial attacks in NLP focus on making
substitutions at the word level or the character level.
A few works have considered replacing phrases
(Ribeiro et al., 2018) as well as paraphrasing full
sentences (Lei et al., 2019; Iyyer et al., 2018). How-
ever, neither of these scenarios has been studied
extensively. Future work in NLP adversarial ex-
amples would benefit from further exploration of
phrase and sentence-level transformations.

Motivations for generating NLP adversarial ex-
amples. One purpose of generating adversarial
examples for NLP systems is to improve the sys-
tems. Much work has focused on improvements in
intrinsic evaluation metrics like achieving higher
attack success rate via an improved search method.
To advance the field, future researchers might fo-
cus more on using adversarial examples in NLP to
build better NLP systems.



Figure 4: Number of queries vs. length of input text.



Figure 5: Attack success rate by query budget for each search algorithm and dataset.



Model Dataset Search Method GLOVE Word Embedding HowNet WordNet
Avg P.W. % Avg USE Sim �% Perplexity Avg P.W. % Avg USE Sim �% Perplexity Avg P.W. % Avg USE Sim �% Perplexity

BERT

Yelp

Greedy (b=1) 3.41 0.948 21.5 2.52 0.945 22.8 4.76 0.943 49.9
Beam Search (b=4) 3.26 0.949 20.7 2.45 0.946 22.0 4.49 0.944 46.7
Beam Search (b=8) 3.20 0.950 20.1 2.42 0.947 21.4 4.46 0.945 46.4

WIR (UNK) 6.48 0.930 43.5 4.73 0.922 42.3 9.02 0.924 92.1
WIR (DEL) 6.85 0.928 47.2 5.10 0.919 46.4 9.38 0.923 98.8

WIR (PWWS) 4.36 0.942 27.3 3.11 0.94 28.1 6.10 0.937 66.1
WIR (Gradient) 6.16 0.933 37.8 5.58 0.913 44.5 9.10 0.925 86.4

WIR (RAND) 8.18 0.920 59.1 7.46 0.898 74.6 11.16 0.914 124.8
Genetic Algorithm 5.06 0.936 33.9 4.21 0.928 42.7 6.70 0.932 77.3

PSO 6.61 0.929 47.3 6.08 0.913 62.3 9.67 0.922 111.0

MR

Greedy (b=1) 7.25 0.900 31.8 6.14 0.887 36.5 10.26 0.864 102.8
Beam Search (b=4) 7.22 0.901 31.4 6.10 0.887 36.1 10.10 0.866 97.9
Beam Search (b=8) 7.22 0.901 31.4 6.10 0.887 36.1 10.05 0.866 101.6

WIR (UNK) 9.42 0.884 42.3 7.77 0.866 48.0 14.14 0.845 141.2
WIR (DEL) 9.62 0.882 46.4 7.69 0.865 46.1 14.60 0.840 146.4

WIR (PWWS) 7.36 0.898 33.8 6.22 0.884 37.6 10.80 0.865 111.1
WIR (Gradient) 8.61 0.892 38.1 8.25 0.862 40.8 14.58 0.844 123.2

WIR (RAND) 10.1 0.881 51.4 9.93 0.846 69.5 17.28 0.827 149.4
Genetic Algorithm 8.18 0.895 35.8 6.41 0.885 37.8 12.30 0.854 124.5

PSO 8.71 0.894 39.0 6.46 0.884 38.7 16.08 0.839 187.8

SNLI

Greedy (b=1) 5.59 0.915 37.8 5.02 0.889 31.7 6.53 0.903 55.9
Beam Search (b=4) 5.59 0.916 37.8 5.02 0.889 31.6 6.50 0.903 55.7
Beam Search (b=8) 5.59 0.916 37.8 5.02 0.889 31.6 6.50 0.903 55.9

WIR (UNK) 6.56 0.911 42.8 5.65 0.887 33.4 8.03 0.899 65.5
WIR (DEL) 6.77 0.91 44.0 5.81 0.887 34.2 8.22 0.898 67.6

WIR (PWWS) 5.63 0.915 37.8 5.05 0.89 30.5 6.59 0.906 54.5
WIR (Gradient) 6.57 0.911 41.6 5.9 0.881 37.7 8.06 0.899 65.1

WIR (RAND) 7.06 0.909 47.7 6.19 0.884 42.9 8.65 0.895 74.6
Genetic Algorithm 5.71 0.915 38.5 5.14 0.888 32.7 6.73 0.902 58.3

PSO 5.76 0.915 38.6 5.14 0.888 32.5 6.94 0.902 58.5

LSTM

Yelp

Greedy (b=1) 4.04 0.943 28.9 2.47 0.948 23.9 4.58 0.946 52.1
Beam Search (b=4) 4.01 0.942 28.9 2.47 0.949 23.7 4.53 0.946 51.9
Beam Search (b=8) 4.01 0.943 28.7 2.44 0.949 23.0 4.51 0.946 51.3

WIR (UNK) 5.83 0.933 42.4 3.51 0.935 34.4 7.22 0.935 75.6
WIR (DEL) 5.86 0.932 41.1 3.61 0.936 33.3 7.22 0.935 75.4

WIR (PWWS) 4.57 0.940 32.6 2.58 0.947 23.9 5.14 0.944 57.0
WIR (Gradient) 7.05 0.926 52.2 5.25 0.916 50.7 8.42 0.929 87.9

WIR (RAND) 7.28 0.925 53.6 6.33 0.906 69.5 9.40 0.925 102.4
Genetic Algorithm 5.94 0.933 42.8 3.73 0.930 41.9 6.37 0.936 80.9

PSO 6.70 0.929 47.3 5.03 0.924 58.7 7.98 0.93 95.2

MR

Greedy (b=1) 7.19 0.899 33.5 5.96 0.884 37.2 10.21 0.871 100.6
Beam Search (b=4) 7.19 0.899 33.7 5.96 0.884 37.6 10.03 0.871 98.7
Beam Search (b=8) 7.19 0.899 34.0 5.96 0.884 37.6 10.00 0.871 97.4

WIR (UNK) 8.99 0.889 41.7 7.22 0.874 42.9 12.99 0.856 104.5
WIR (DEL) 9.17 0.889 44.5 7.21 0.874 42.2 13.03 0.856 107.5

WIR (PWWS) 7.45 0.898 33.7 6.01 0.884 37.1 10.50 0.871 87.9
WIR (Gradient) 8.73 0.892 41.4 7.33 0.870 40.8 13.12 0.859 104.1

WIR (RAND) 10.60 0.880 54.0 9.31 0.853 57.7 16.05 0.842 148.2
Genetic Algorithm 8.02 0.896 36.4 6.36 0.881 39.5 11.98 0.860 120.2

PSO 8.41 0.893 40.2 6.32 0.882 40.8 13.90 0.854 130.0

Table 4: Quality evaluation of the adversarial examples produced by each search algorithm. ”Avg P.W. %” means
average percentage of words perturbed, ”Avg USE Sim” means average USE angular similarity, and ”�% Perplex-
ity” means percent change in perplexities.


